Workshop on EC CEOS Priority on GHG Monitoring Japan's Greenhouse Gases Observation from Space

18 June, 2018@Ispra, Italy

Masakatsu NAKAJIMA

Japan Aerospace Exploration Agency

BUKI Launch Date 12:54, January 23, 2009 (JST)

Development and Operation Structure of GOSAT, GOSAT-2

Size	Main body	3.7 m x 1.8 m x 2.0 m (Wing Span 13.7m)		
Mass	Total	1750kg		
Power	Total	3.8 kW (EOL)		
Life Time	5 years			
Orbit	sun synchronous orbit			
	Local time	13:00+/-0:15		
	Altitude	666km		
	Inclination	98deg		
	Repeat	3 days (44 revol.)		
Launch	Vehicle	H-IIA		
	Schedule	Jan. 23, 2009		

TANSO-FTS

(Fourier Transform Spectrometer) -SWIR reflected on the earth's surface -TIR radiated from the ground and the atmosphere

GOSAT and TANSO onboard GOSAT

TANSO=Ihermal And Near infrared Sensor for carbon Observation

TANSO-CAI (Cloud and Aerosol Imager) UV : 0.38 µm V : 0.67 µm

NIR : 0.87 μm SWIR : 1.6 μm

Brief History of GOSAT

January 2009 : Launch of GOSAT

April 2009 : Completed the on orbit initial check out phase and started the observation

April 2009 : Start of the L1B Products distribution to the PIs

August 2009 : Start of the L2 products distribution to the PIs

October 2009 : Start of the L1B Products distribution to the Public

February 2010 : Start of the L2 products distribution to the Public

(Calibration/Validation have been continued.)

January 2014 : End of the nominal operation phase (Phase E) and Start of the Phase F

```
April 2014 : Start of the development of GOSAT-2
```

January 2018 : Start of the tenth year

2018 : Launch of GOSAT-2 (design life time is 5 years.)

2022 : Launch of GOSAT-3

(according to "The Basic Plan for Space Policy")

GOSAT-captured CO2 Global Map (Monthly mean map in every 2.5 degrees mesh)

Explore to Realize

GOSAT-captured CO2 Global Map (Monthly mean map in every 2.5 degrees mesh)

GOSAT-captured CO2 Global Map (Monthly mean map in every 2.5 degrees mesh)

GOSAT-captured CH4 Global Map (Monthly mean map in every 2.5 degrees mesh)

Explore to Realize

GOSAT-captured CH4 Global Map (Monthly mean map in every 2.5 degrees mesh)

GOSAT-captured CH4 Global Map (Monthly mean map in every 2.5 degrees mesh)

Whole-atmosphere monthly mean CO2 concentration based on GOSAT data

Whole-atmosphere monthly mean CH4 concentration based on GOSAT data

Detecting Anthropogenic CO₂ Concentrations in Mega-City Regions from Space by GOSAT

1	China	6.2 ppm	6	USA (LA)	3.5 ppm
2	India(Calcutta)	2.1 ppm	7	Mexico (Acapulco)	2.7 ppm
3	Uzbekistan, Kazakhstan etc.	2.8ppm	8	Japan (Tokyo)	o.5 ppm
5	USA (Pittsburgh)	2.1ppm			

Relationship between anthropogenic CO2 concentrations

derived from emission inventories and those acquired by GOSAT

Estimation of the anthropogenic CO2 concentrations in Japan

GOSAT data

Generally agreed

data on fossil fuel emissions (inventory)

Satellite observations from space can become useful to monitor and verify CO₂ emission rates that were aggregated and published by all nations of the world based on the framework of "The Paris Agreement".

Archive of GOSAT Data

https://data2.gosat.nies.go.jp/index_en.html

Archive of GOSAT Data

https://data2.gosat.nies.go.jp/gallery/fts_l2_swir_co2_gallery_en.html

Mission of GOSAT-2

<u>GOSAT-2</u>

improvement of concentration measurement precision

0.5 ppm (CO2) 5 ppb (CH4) per 1 month at 500 km mesh (land) at 2,000 km mesh (ocean)

4 ppm (CO2) 34 ppb (CH4) per 3 months at 1,000km mesh (land)

improvement of estimation accuracy of flux

estimation of the anthropogenic emission

monitoring of the aerosols in the atmosphere estimate the monthly net fluxes with the accuracy of $\pm 100\%$ at 1,000 km mesh (land) at 4,000 km mesh (ocean) (> $\pm 0.2GtC/area/year$)

examine the feasibility of the

estimation of the anthropogenic

emission with the observation of CO which is the correlated matter

reduce the annual estimation error to half compared with the existing estimation error -sub-continental scale

calculate the optical thickness of the aerosols at 550nm and 1.6µm with 0.1 accuracy (for estimation of the moving state of the PM2.5)

GOSAT-2 artist's illustration

TANSO-FTS-2

TANSO-CAI-2

Units of TANSO-FTS-2

TANSO-FTS-2 Specifications

Items	GOSAT-2	GOSAT	
Measurement Gases	CO2, CH4, O3, H2O, CO	CO2, CH4, O3, H2O	
Footprint size (FOV)	9.7 km∳ (15.8mrad)	10.5 km¢ (15.8mrad)	
Spectral Ranges	band 1 : 0.75-0.77 (12,950-13,250)	band 1: 0.75-0.77 (12,900-13,200)	
(µm)(cm-1)	band 2: 1.56- 1.69 (5,900 -6,400)	band 2: 1.56-1.72 (5,800-6,400)	
	band 3: 1.92- 2.33 (4,200 -5,200)	band 3: 1.92-2.08 (4,800-5,200)	
	band 4: 5.5-8.4 (1,188-1,800)	band 4: 5.5-14.3 (700-1,800)	
	band 5: 8.4- 14.3 (700-1,188)		
SNR	band 1: >400 (S@13,050cm ⁻¹)	band 1: >300 (345)	
	band 2: >300 (S@6,200cm ⁻¹)	band 2: >300 (322)	
	band 3: >300 (S@5,000cm ⁻¹)	band 3: >300 (412)	
	>250 (S@4,250cm ⁻¹)	band 4: >300 (304)	
	band 4: >300 (@1,300cm ⁻¹)		
	band 5: >300 (@700cm ⁻¹)		
Observation Mesh	160km (5 points in the CT direction)	160km (5 points in the CT direction)	
Scan duration 4 seconds / interferogram		4, 2, 1.1 seconds / interferogram	
Sampling resolution	0.2cm ⁻¹	0.2cm ⁻¹	
Effective Aperture size	Φ73mm	Φ64mm	
Gain steps	16	2	
Avoidance of the cloud	Intelligent pointing		

External appearance and inside of the TANSO-CAI-2 Optical Unit

TANSO-CAI-2 Specifications

Items	GOS	AT-2	GOSAT	
Spectral Ranges	Forward Viewing	Backward Viewing	Nadir Viewing	
(nm)	(+20 deg)	(-20deg)		
	b 1: 333-353	b6: 370-390	band 1: 370-390	
	b 2: 433-453	b7: 540-560		
	b 3: 664-684	b 8: 664-684	band 2:664-684	
	b 4 : 859-879	b 9: 859-879	band 3:860-880	
	b 5 : 1585-1675	b 10: 1555-1645	band 4 : 1555-1645	
Spatial Resolution	except band 5, 10	band 5, 10	Band 1-3 Band 4	
nadir 460m (700µra		920m(1,400µrad)	500m(750µrad) 1,500m(2,250µrad)	
swath/FOV	every points on the earth to be observed at		Band 1-3 Band 4	
Stradiff Of	least twice a recurrent	: cycle	1,002 km / 72 deg 786km / 60 deg	
SNR	b 1 : >200 (45/0.158) b 6 : >200 (48/0.152)		b 1 : >200 (47/0.149)	
(@spectral-	b 2 : >200 (79/0.144) b 7 : >200 (65/0.125)			
radiance/albedo) b 3 : > 200 (46/0.106) b 8 : >		b 8:>200 (46/0.106)	b 2 : >200 (45/0.104)	
	b 4 : >200 (30/0.112)	b 9:>200 (30/0.112)	b 3 : >200 (29/0.108)	
(vv/m²/sr/µm)	b 5 : >200 (7/0.101)	b 10 : >200 (7/0.101)	b 4 : >200 (7/0.101)	

Road to IPCC

Summary

- GOSAT Has been operated over 9 years.
- Estimation of the anthropogenic CO₂ concentration in Japan using GOSAT data generally agreed with the one derived from the inventory.
- The observation from space will become one of the useful means for the inventory.
- GOSAT follow on mission, GOSAT-2, will be launched in JFY 2018 which has 5 years design life time.
- Japan is now under consideration for GOSAT-3 to continue the GHGs observation.