

Committee on Earth Observation Satellites

Updated Status of CMA Satellite Programs

Jun Yang, Shihao Tang, Xiuqing Hu National Satellite Meteorological Center, CMA CEOS Plenary 2017 Agenda Item # 4.15 Rapid City, South Dakota, USA 19 – 20 October 2017

Current Status

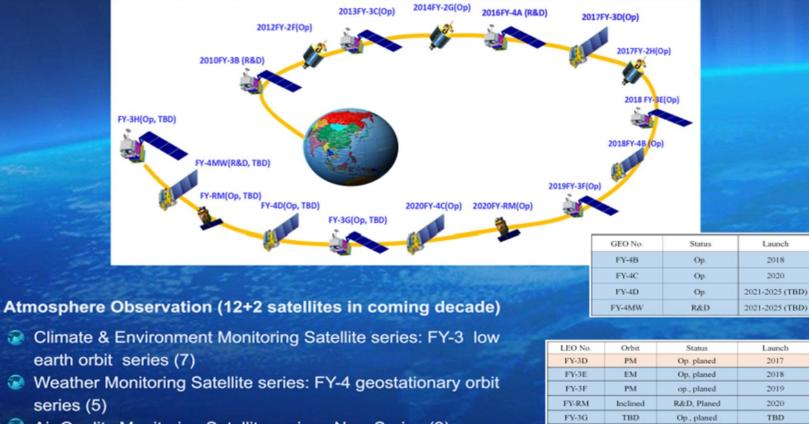
GEO Programs

- FY-2D/E/F/G(op.)
- FY-4A(R&D), new generation!

LEO Programs

- FY-3A/B(R&D)
- FY-3C(op.), AM
- FY-3D(op.), PM, coming soon!

Others (cooperative missions)


- TANSAT(R&D),CO2 & aerosol led by MOST
- GF-4 (R&D), High Spatial Res. Imaging In GEO led by CNSA

Future Satellite Programs

Future Plan: National Space Infrastructure Plan (NSIP)

In 2015, the Chinese government has approved an extensive plan called NSIP, which will cover a number of earth observation satellite series including atmosphere, land, and ocean satellites in period of 2015-2025.

FY-3H

TBD

Op., planed

TBD

Air Quality Monitoring Satellite series : New Series (2)

Latest progress on CMA satellite programes

1. FY-4A

- The first GEO. meteorological satellite of new generation
- Launched on Dec.11, 2016

2. FY-3D

- A new operational afternoon orbit LEO. satellite, will co-work with FY-3C in morning orbit.
- Launch date is scheduled in coming Nov. 2017!

3. TANSAT

- A joint R&D satellite program initiated by MOST, and supported by CMA which is responsible for data reception, processing and distribution, taking advantage of current FY-3 ground segment resources.
- Launched successfully On Dec.22, 2016

4. GF-4

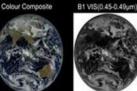
- The 4th satellite in High res. Earth Obs. Satellite Project led by CNSA, while CMA is responsible for data reception, transmission and preprocessing of MET mode.
- Launched in Dec. 29,2015
- Commissioning test finished and handover declared on June 1st, 2016

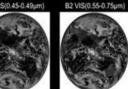
FY-4A: The First CMA New-generation Geostationary Meteorological Satellite

Launched on Dec.11, 2016, Located at 105E, will be ready for operation soon!

Instrument		Purposes	
	AGRI: Advanced Geosynchronous Radiation Imager	14 -channel Earth images	
	GIIRS : Geostationary Interferometric InfraRed Sounder	Clear-sky atmospheric temperature and humidity profiles	
	LMI : Lightning Mapping Imager	Lightning distribution map in China area	
	SEP: Space Environment Package	Space electric and magnetic environment information	

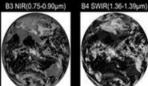
FY-4A GEOSTATIONARY METEOROLOGICAL SATELLITE

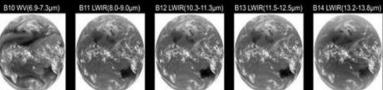

The First Colour Composite Image of FY-4A AGRI



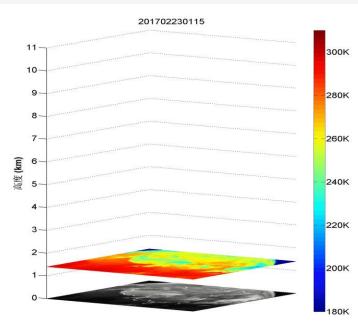
February 20th, 2017 05:15 (UTC)

FY-4A GEOSTATIONARY METEOROLOGICAL SATELLITE

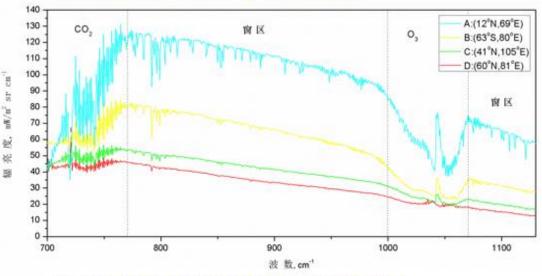

The First Images of FY-4A AGRI

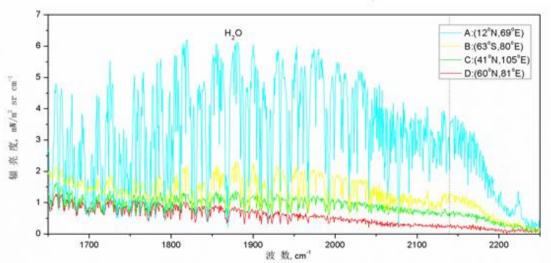

B6 SWIR(2.1-2.35µm) B7 MWIR-H(3.5-4.0µm) B8 MWIR-L(3.5-4.0µm) B9 WV(5.8-6.7µm) B5 SWIR(1.58-1.64µm)

February 20th, 2017 05:15(UTC)



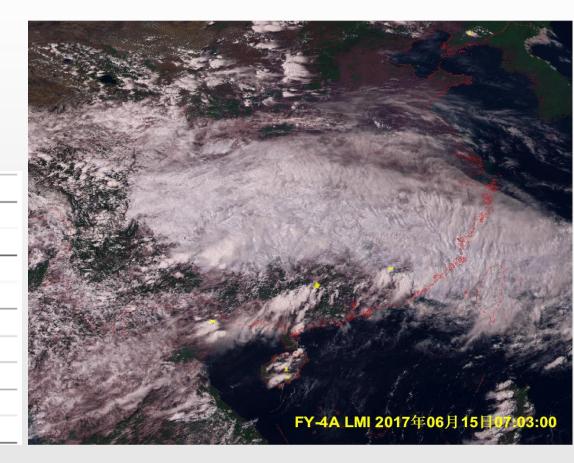
GIIRS: Geo. Interferometric Infrared Sounder



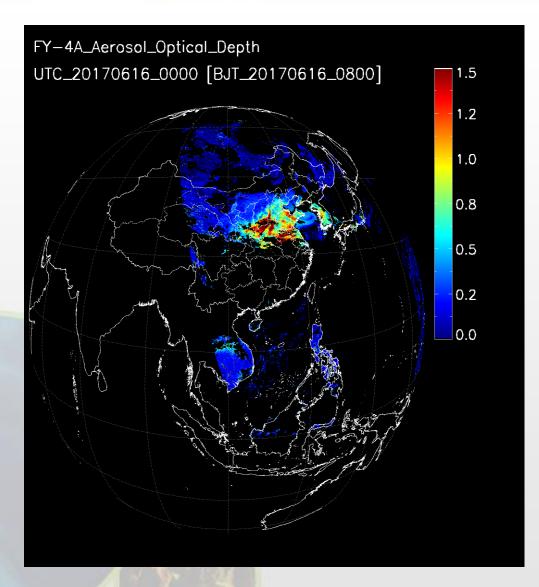

Spatial resolution: 16km, Spectral resolution 0.625

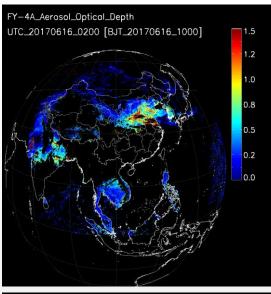
Longwave IR 700-1130cm⁻¹, 8.85-14.29µm)

Middle Wave IR (1650-2250cm-1, 4.44-6.06µm)

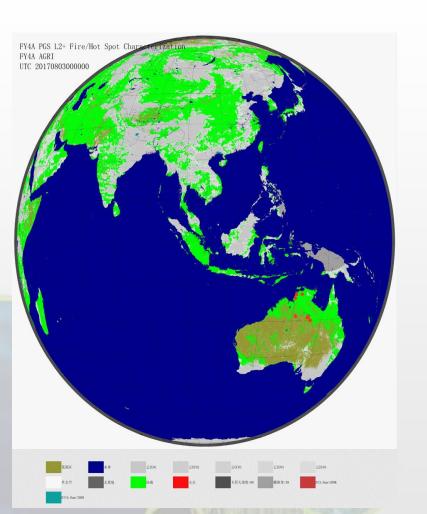

CEOS LMI: lightning Mapping Imager

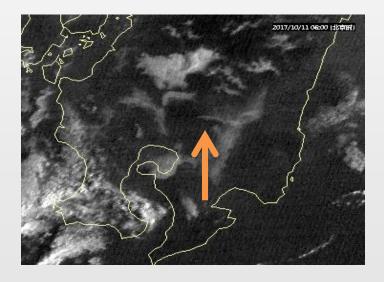
<u>LMI</u>


Acquire lightning distribution maps over china region


Spatial resolution	about 7.8 km at SSP	
Wave-length at center	777.4nm	
Band-width	1nm±0.1nm	
Detection efficiency	>90%	
False-alarm ratio	<10%	
Dynamic range	>100	
SNR	>6	
Frequency of frames	2ms (500 frames per sec.)	
Quantization bits	12	
Measurement error	10%	

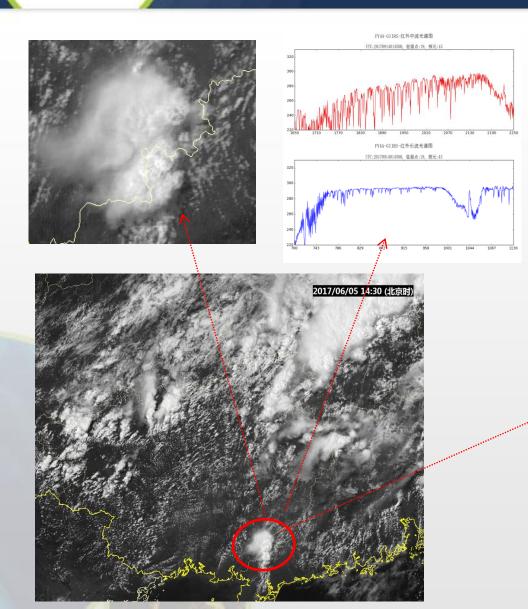
Examples of applications



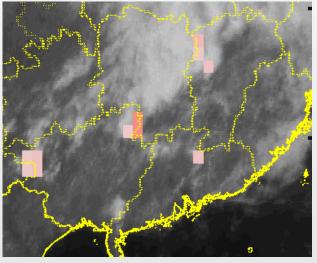

AHI08_Aerosol_Optical_Depth UTC_20170616_0200 [BJT_20170616_1000] 1.5 1.2 1.0 0.8 0.5 0.2 0.0

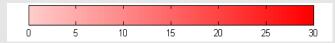
Examples of applications

2017-07-03 08:30 (北京时)



Synergic application





1. FY-4A lightning frequency map: strong convective cloud clusters often acompany with obvious lightnings.

2. FY-4A high spatial resolution imager: finer structure and texture of strong convective cloud cluster; and clearer small scale cumulus line.

3. Cloud free atmospheric profile acquired from GIIRS can be used for nowcast warning.

LEO: The coming new satellite FY-3D -- to be deployed in afternoon orbit

10 instruments on borad FY-3D: Successive instruments:

MWTS-II: Microwave Temperature sounder MWHS-II: Microwave Humidity sounder MWRI: Microwave Radiation Imager GNOS: Global Navigation Occultation Sounder SEM: Space Environment Monitor

□ Improved instruments:

MERSI-II: Improved from MERSI HIRAS: Upgraded from filter-type spectrometer IRAS

□ New Instruments:

GAS: Greenhouse gases Absorption Spectrometer

WAI: Wide-angle Aurora Imager

IPM: Ionospheric Photometer

MERSI→MERSI-II continuity and Evolution

MERSI-2 Improvement:

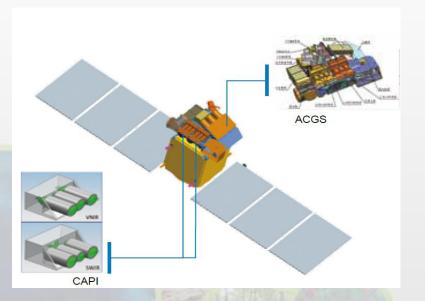
- Cover all bands in FY-3A/B/C MERSI
- Five more IR bands
- Circurrus cloud band
 1.38um
- Water vapor bands In NIR and 7.2um
- Two IR split windows with 250m spatial resolution
- Higher accuracy from onboard calibration
- Lunar Calibration capability

Band	SNPP VIIRS	FY-3D MERSI-II	FY-3A/B/C MERSI	
1	DNB	0.470	0.470	
2	\checkmark	0.550	0.550	
3	\checkmark	0.650	0.650	
4	\checkmark	0.865	0.865	
5	×	1.03	11.25	
6	V	1.64	1.640	
7	\checkmark	2.13	2.130	
8	\checkmark	0.412	0.412	1
9	\checkmark	0.443	0.443	100
10	\checkmark	0.490	0.490	
11	\checkmark	0.555	0.520	
12	\checkmark	0.670	0.565	
13	\checkmark	0.709	0.650	
14	\checkmark	0.746	0.685	
15	V	0.865	0.765	
16	×	0.905	0.865	
17	×	0.936	0.905	
18	×	0.940	0.940	
19	V	1.38	0.980	
20	V	3.8	1.030	
21	\checkmark	4.05		
22	×	7.2		
23	V	8.550		
24	\checkmark	10.8		
25	\checkmark	12.0		

□ 250 m □ 1000 m

GAS: Greenhouse gases Absorption Spectrometer

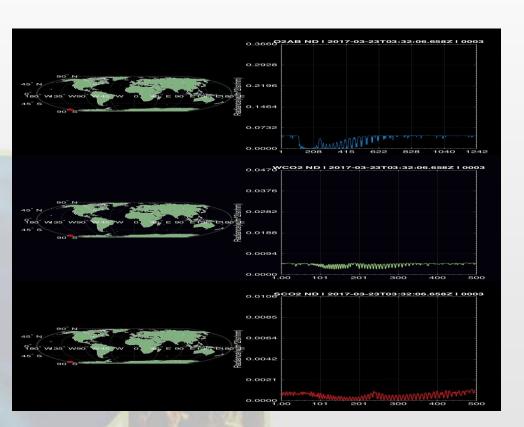
- Objectives: to measure CO₂ and CH₄ column density by using a SWIR Interferometer
- Spectral res.: 0.2 cm⁻¹
- Spatial res.: 13km
- Number of Bands: 4

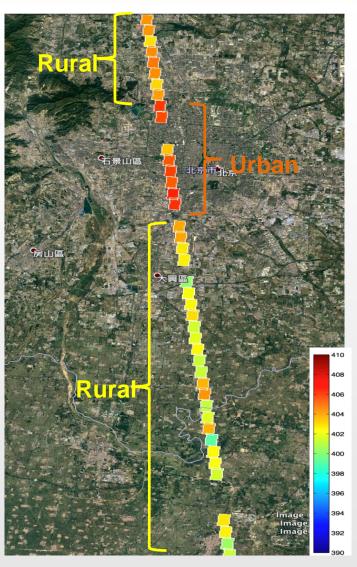

*
V/ W/
$W = \frac{W}{W} / \sqrt{1}$

Specification		FY-3D GAS	FY-3G GAS-II	TanSat	000
Spectral bands (µm)	0.76	\checkmark	\checkmark	\checkmark	\checkmark
	1.6	\checkmark	\checkmark	\checkmark	\checkmark
	2.0	\checkmark	\checkmark	\checkmark	\checkmark
	2.3	\checkmark	\checkmark		—
Spectral Resolution (nm) @1.6µm		0.073	0.07	0.12	0.0757
Spatial Resolution (km)		13.2	< 3	2	1
Swath(km)			>100	20	10
Sample points		7		9	8
Sample interval (S)		2.2		0.3	0.333

TANSAT A joint mission by: MOST(Ministry Of Science and Technology), CAS(Chinese Academy of Science), and CMA. Mission objective: *To retrieve the atmosphere column-averaged CO2 dry air mole fraction (XCO2).*

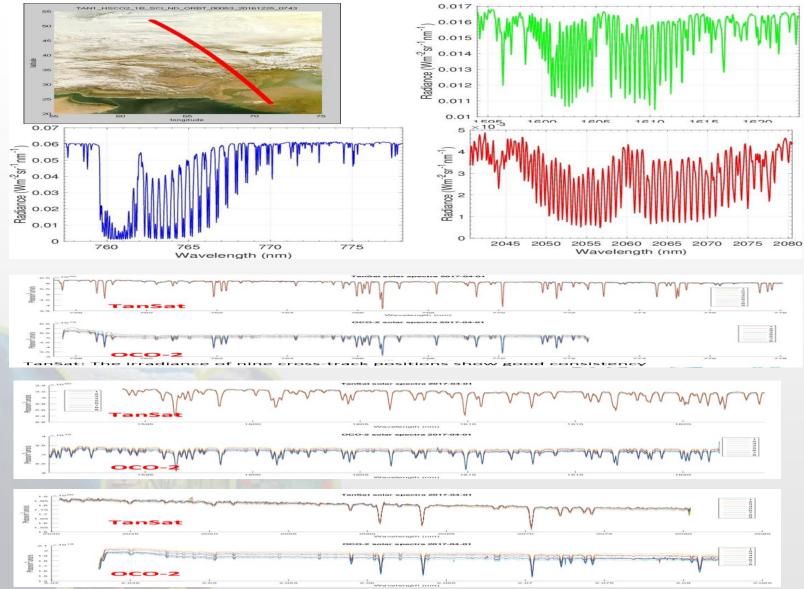
TANSAT satellite was successfully Launched in Dec. 22, 2016 1)ACGS(Atmospheric CO2 Grating Spectrometer) is mainly used to measure atmospheric CO2. It has three spectral bands. One is the oxygen A-band with a centroid wavelength of 760nm. The other two are weak and strong carbon dioxide absorbing bands with centroid of 1610nm and 2060nm.


2)CAPI(Cloud and Aerosol Polarization Instrument) is a 5-channel UV/VIS/ NIR/SWIR radiometer with three polarizations in two channels



XCO₂

- TANSAT was successfully launched on Dec. 22,2016.
- Commissioning test has been finished by June,2017, and the Satellite was handed over to NSMC/CMA for operation
- > All the data and products will be available soon.

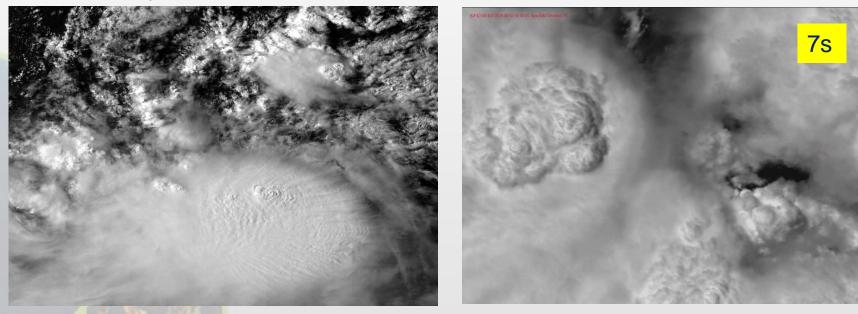


The first spectra of TanSat

10.010

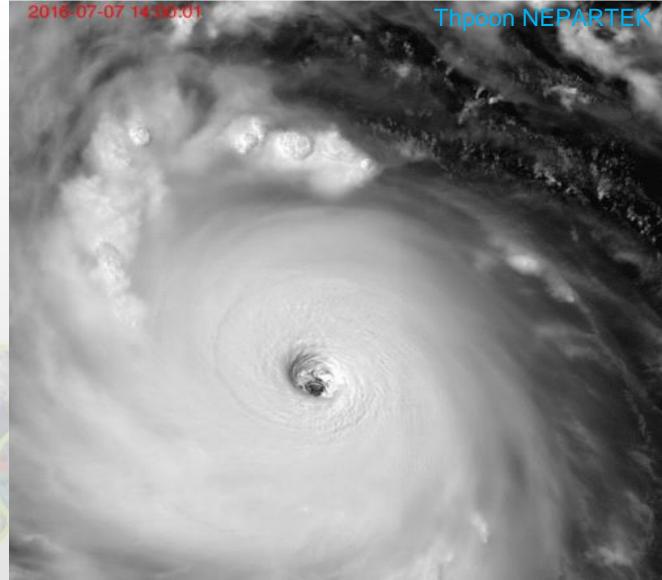
an.comm

s be wavetength (nm) den


OCO-2 ------

Status of GF-4

- Launched on 29 December 2015, Location at 105.6°E
- GF-4 is China's first high resolution geostationary satellite. Its spatial resolution is 50m at visible and near infrared band, and 400m at mid-infrared band. Its temporal resolution can reach several seconds.
- Useful for the monitoring of rapid growing meco-or small scale convective system.



CESS GF-4: New eyesight from GEO orbit

Detector 10,000X10,000 **Spatial res.** 50 meters **Temporal res.** 10, 20, 60s

Thank you for your attention

