Global Estimates of Long-Term Fine Particulate Matter Concentrations Derived from Multiple Data Sources

Randall Martin

with contributions from

Melanie Hammer, Emmie Le Roy, Chi Li, Jun Meng, Jacob McNeil, Brenna Walsh, Crystal Weagle, Aaron van Donkelaar

Josh Apte (Berkeley), Michael Brauer (UBC), Bonne Ford (CSU), Michael Garay (JPL), Daven Henze (Boulder), Christina Hsu (NASA), Ralph Kahn (NASA), Olga Kalashnikova (JPL), Robert Levy (NASA), Alexei Lyapustin (NASA), Vanderlei Martins (UMBC), Jeff Pierce (CSU), Yinon Rudich (Weizmann), Andrew Sayer (NASA), Qiang Zhang (Tsinghua)

CEOS Virtual Meeting
11 June 2020
Vast Regions Have Insufficient PM$_{2.5}$ Measurements for Exposure Assessment

No One Knows Where is the City with the Highest PM$_{2.5}$ Concentrations

Density of Long-Term PM$_{2.5}$ Monitoring Sites

Many countries have no PM$_{2.5}$ monitoring

Global population-weighted distance to monitor = 220 km

Martin et al., AE, 2019
Long-Term (1998-2018) Aerosol Optical Depth (AOD)

Use AERONET AOD to Assess Relative Accuracy & Combine

![Map of aerosol optical depth with percentage contributions for various sources including MISR (MISR), Dark Target (MODIS), Deep Blue (MODIS), MAIAC (MODIS), Deep Blue (SeaWiFS), and GEOS-Chem (SIMULATED).]

Population-weighted Contribution Inset

AERONET

Hammer, van Donkelaar, et al., ES&T, 2020
Apply Chemical Transport Model (GEOS-Chem) to Calculate Solution to PM$_{2.5}$ = $f(x,y,t,AOD)$

Simulate suite of processes relating AOD&PM$_{2.5}$: e.g. aerosol vertical profile, mass scattering efficiency, hygroscopicity, relative humidity, chemical composition, diurnal variation, irregular sampling

Coincident sampling with observations
Geophysical Satellite-Derived PM$_{2.5}$ for 2015

If GEOS-Chem AOD/PM$_{2.5}$ excluded: $R^2 \rightarrow 0.73$
If only single satellite AOD retrieval: $R^2 \rightarrow 0.5-0.7$

Information source for:

Global Burden of Disease
OECD Regional Well Being Index
World Health Organization
World Bank
HEI State of Global Air
UNICEF
Energy Policy Institute

Hammer, van Donkelaar, et al., ES&T, 2020
Similarity Between Annual Mean AOD and PM$_{2.5}$ Encouraging for Satellite-Derived PM$_{2.5}$

$R^2 = 0.83$

Hammer, van Donkelaar, et al., ES&T, 2020
Satellite-Derived PM$_{2.5}$ Timeseries (1998-2018)

Eastern U.S.
- $\text{slope}_{1998-2018} = -0.44 \pm 0.05 \, \mu g \, m^{-3} \, yr^{-1}$
- $\text{slope}_{1998-2018} = -0.43 \pm 0.03 \, \mu g \, m^{-3} \, yr^{-1}$

East Asia
- $\text{slope}_{2011-2018} = -3.67 \pm 0.38 \, \mu g \, m^{-3} \, yr^{-1}$
- $\text{slope}_{2011-2012} = 0.93 \pm 0.19 \, \mu g \, m^{-3} \, yr^{-1}$
- $\text{slope}_{1998-2018} = -0.22 \pm 0.19 \, \mu g \, m^{-3} \, yr^{-1}$

Europe
- $\text{slope}_{1998-2018} = -0.15 \pm 0.03 \, \mu g \, m^{-3} \, yr^{-1}$

India
- $\text{slope}_{1998-2018} = 1.13 \pm 0.15 \, \mu g \, m^{-3} \, yr^{-1}$
- $\text{slope}_{2005-2013} = 2.44 \pm 0.44 \, \mu g \, m^{-3} \, yr^{-1}$
- $\text{slope}_{2005-2010} = 0.55 \pm 0.7 \, \mu g \, m^{-3} \, yr^{-1}$
- $\text{slope}_{1998-2007} = 0.93 \pm 0.39 \, \mu g \, m^{-3} \, yr^{-1}$

Hammer, van Donkelaar, et al., ES&T, 2020
Statistical Fusion with Ground-Based Monitors Further Improves Consistency; Still Room for Improvement

Error likely driven by modeled relation between AOD and PM$_{2.5}$

Statistical fusion explains ~10% of variance

Hammer, van Donkelaar, et al., ES&T, 2020
Complex Relation of “Dry” PM$_{2.5}$ with AOD

Affected by aerosol properties, vertical structure, elevation
Dry (35% RH) vs ambient relative humidity (RH)
Ground-level vs column aerosol
Elevated topography

GEOS-Chem Simulation of PM$_{2.5}$/AOD for 1998-2018

\[\eta = \frac{\text{PM}_{2.5}}{\text{AOD}} \text{ (\mu g m}^{-3}\text{)} \]

Model sampled coincidently with satellite observations
PM$_{2.5}$ calculated at 35% RH

Hammer et al., ES&T, 2020
Surface Particulate Matter Network (SPARTAN): Measures PM$_{2.5}$ Mass & Composition at Sites Measuring AOD

Semi-autonomous PM$_{2.5}$ & PM$_{10}$ Impaction Sampling Station (AirPhoton)

3-λ nephelometer (AirPhoton) Scatter

AOD from Sunphotometer (e.g. AERONET)

Mass (35% RH)
BC (HIPS); BrC (UV-Vis)
Ions (IC)
Metals (XRF)
Organics (AMS, FTIR) in progress

Surface/Column

\[
\frac{\text{PM}_{2.5}}{\text{AOD}} = \left(\frac{b_{sp,\text{overpass}}}{\text{AOD}_{\text{overpass}}} \right) \left(\frac{b_{sp,24h}}{b_{sp,\text{overpass}}} \right) \left(\frac{\text{PM}_{2.5,24h}}{b_{sp,24h}} \right)
\]

\[b_{sp} = \text{nephelometer measurements of aerosol scatter}\]
\[\text{overpass} = \text{satellite overpass time}\]

www.spartan-network.org
Snider, Weagle, et al., AMT, 2015
Conclusions

• Growing interest in global estimates of PM$_{2.5}$

• Increasing consistency of global annual satellite-derived PM$_{2.5}$ concentrations with ground-based measurements

• Need for dedicated measurements of the relationship of AOD with PM$_{2.5}$ mass, scatter, and chemical composition to evaluate and improve simulations of the AOD to PM$_{2.5}$ relationship & to better understand relationships at shorter timescales