CEOS ACC-12 & 7th GEMS STM, Yonsei University,, Oct 10-14, 2016

Status of GEMS

Jhoon Kim¹, U. Jeong², M. Kim², S. Go², X. Liu³, Kelly Chance³ ¹P.I., GEMS; ² Yonsei Univ., ³Harvard Smithonian CfA GEMS Science Team

¹ Department of Atmospheric Sciences, Yonsei University, Seoul, Kore ² National Institute of Environmental Research

GEO-KOMPSAT 2

2A Sat. : AMI	2B Sat. : GEMS, GOO	CI-2 Specification			
Launch : 5/2018	Launch : 3/2019		2A 2B		3
		Payload	AMI	GOCI-2	GEMS
		Lifetime		10 years	
(Twir		Channels	16	13	1000
		Wavelength range	0.4 - 13 μm	375 - 860 nm	300-500 nm
		Spatial resolution	0.5 / 1 km (Vis) 2 km (IR)	250 m@ eq 1 km (FD)	7 x 8 km ² @ Seoul 3.5x8 km ² (aerosol)
		Temporal resolution	10 min (FD)	1 hour	1 hour
		Major Products	CTP, CTT, CF, AOD, FMF, OLR, SI, CSR, SST, LST, AMV, (56)	Ocn. current, chloryphyl, DOM, Phytoplankto n, 	AOD, AI, SSA, ACH, CCH, CRF, NO ₂ , O ₃ , S O ₂ , UVI, HCHO, CHOCHO

Objective: Measurements of O_3 & aerosol with precursors

GEMS Instrument

- Step-and-stare UV-Vis imaging spectrometer scanning at least 8/day in 30 min
- Daily solar and dark calibration
- Images coadded at each position + mirror move back < 30 minutes
- Diffusers for on-orbit solar calibration and onboard LED light source
- 2-axis scan mechanism with gyro feed capability
- Redundant electronics for 10-year lifetime
- ✓ Hot pixel issues in southern part of the GEMS domain.
- ✓ Solar calibration time with GOCI-2 within 29-31 deg with the GEMS BTDF char acterized at 30 deg.

Status of GEMS

GEMS Development

- SDR in Oct., 2013, PDR in Mar., 2014, CDR in Feb., 2015
- GEMS Telescope shall be assembled, aligned, and tested at KARI in 2015 (JDAK)
- GEMS System integration and test shall be performed in 2016
- TRR in Aug. 2016, PSR in 2017 Q1
- Delivery to KARI from BATC 2017 Q2 for S/C integration

GEO-KOMPSAT-2 Program

- SRR in Apr., 2012; SDR in Feb. 2014, PDR in Jul., 2014,
- CDR planned in Sep. 2015 for GK-2A, and Jan. 2016 for GK-2B

Launch

- Launch : Mar., 2019 by Arianespace (2A launch : May, 2018)

Related activities

- Air quality forecast in operation since 2013 by NIER/ME
 - \rightarrow GEMS to be an operational sat. (e.g. data assimilation of model with sat. data)
- 'KORUS-AQ' airborne campaign in 2016 (with GEOTASO and MOS)
- Cal/val network
 - MaxDOAS, Pandora Network, AERONET, SONET, SKYNET, LIDARnetwork etc.

Spatial coverage

Baseline products (16)

Product	Importan ce	Min (cm ⁻²)	Max (cm ⁻²)	Nominal (cm ⁻²)	Accurac y	Window (nm)	Spat Resol (km ²)@Seo ul	SZA (deg)	Algorit hm
NO ₂	O3 precursor	3x10 ¹³	1x10 ¹⁷	1x10 ¹⁴	1x10 ¹⁵ cm ⁻²	432-450	7 x 8 x 2 pixels	< 70	
SO ₂	Aerosol precursor Volcano	6x10 ⁸	1x10 ¹⁷	6x10 ¹⁴	1x10 ¹⁶ cm ⁻²	312-326	7 x 8 x 4 pixels x 3 hours	< 50 (60*)	BOAS
нсно	VOC	1x10 ¹⁵	3x10 ¹⁶	3x10 ¹⁵	1x10 ¹⁶ cm ⁻²	327-356	7 x 8 <mark>x 4 pixels</mark>	< 50 (60*)	DOA3
сносно	proxy				1x10 ¹⁶ cm ⁻²	437-452	7 x 8 x 4 px	< 50	
TropLO3 TropUO3 StratO3 TotalO3	Oxidant Pollutant O ₃ layer	4x10 ¹⁷	2x10 ¹⁸	1x10 ¹⁸	3%(TOz) 5%(Stra) 20(Trop)	300-340	7 x 8	< 70	oe toms
AOD AI SSA AEH	Air quality Climate	0 (AOD)	5 (AOD)	0.2 (AOD)	20% or 0.1@ 400nm	300-500	<mark>3.5</mark> x 8	< 70	Multi- λ OE O ₂ O ₂
[Clouds] ECF CCP	Retrieval Climate	0 (COD)	50 (COD)	17 (COD)		460-490	7 x 8	< 70	O ₂ O ₂ RRS
Surface Property	Environ- ment	0	1	-		300-500	<mark>3.5</mark> x 8	< 70	Multi- λ
UVI	Public	0	12	-			7 x 8	< 70	

Performance Prediction

Error analysis Using the Optimal Estimation Method

$$\hat{\mathbf{x}} - \mathbf{x} = (\mathbf{A} - \mathbf{I}_n)(\mathbf{x} - \mathbf{x}_a)$$

$$+ \mathbf{G}_{\mathbf{y}} \mathbf{K}_{\mathbf{b}} (\mathbf{b} - \hat{\mathbf{b}})$$

$$+ \mathbf{G}_{\mathbf{y}} \mathsf{D} \mathbf{f} (\mathbf{x}, \mathbf{b}, \mathbf{b'})$$

- \rightarrow Smoothing error
- \rightarrow Model parameter error
- \rightarrow Forward model error

→ Retrieval noise

Solution error (S_{sn}) : square-root-sum of the diagonal elements of smoothing error and retrieval noise covariance

matricestrieved value

- **x** : true value
- A : averaging kernel
- I_n : identity matrix
- $\mathbf{X}_{\mathbf{a}}$: a priori estimates of x
- **G** : contribution function (generalized inverse of K)

 $+ \mathbf{G}_{\mathbf{v}} \boldsymbol{e}$

- ${\bf K}$: Jacobian matrix
- **b** : true model parameter

- $\hat{\mathbf{b}}$: best estimate of model parameters
- Δf : forward model error
- **b'** : unknown forward model parameters
- ϵ : measurement error

(Rogers, 2000)

Results

Effect of aerosol on retrieved gas column density

(U. Jeong)

Examples of retrieved products using OMI

Averaging kernel for O₃ retrieval

Retrieval sensitivity of tropospheric O_3 is high when SZA and VZA is low, or the amount of stratospheric O_3 is small.

Profile	Degrees of Freedom of O ₃			
Fione	Mean $\pm \sigma$	Median		
Troposphere	0.8 ± 0.2	0.9		
Stratosphere	2.9 ± 0.5	2.8		
Total	3.8 ± 0.4	3.7		

Diurnal variations of averaging kernel of O₃

(U. Jeong) ¹³

Retrieval of O₃

NO₂ Retrieval using OMI L1B data

Cloud RF retrieval : Validation Results (ECF, every 1st day of each month, 2007)

(Courtesy, B.R. Lee, Y.S. Choi)

OMI products

Cloud pressure retrieval : Validation Results (CP, every 1st day of each month, 2007)

(Courtesy, B.R. Lee, Y.S. Choi)

✓ More underestimated data in CP especially in summer.

HCHO retrieval

(Courtesy, H.A. Kwon, R. Park)

HCHO retrieval with aerosol (March, 2006)

(Courtesy, H.A. Kwon, R. Park)

 $\checkmark\,$ Systematic underestmation of HCHO VCD is largely due to AMF.

CHOCHO retrieval (437-452.2nm at 13 KST in July 1, 2006) (Courtesy, H.A. Kwon, R. Park)

Retrieval of AOD, SSA, and HGT

Retrieved AOD [443

AOD [443 nm] from OMI2012m0427t0428

Retrieved SSA [443 nm]

SSA [443 nm] from OMI2012m0427t0428

0.802 0.85

0.90

0.95

1.00

0.75

0.70

Fitted HGT [km]

HGT from OMI [km]2012m0427t0428

MODIS RGB :2012/04/27

Validation of AOD and SSA

Prelaunch Test and Characterization

- Spectral Tests (spectrometer+focal plane)
 - Spectral Bandpass
 - Spectral Range
 - Smile & Keystone
- Stray Light Tests for Stray Light Model Validation (spectrometer+focal pla ne)
 - Diffuser can be placed in the light path
 - Various light source (tunable laser, spectral line source, Xenon arc lamp, Quartz-tungstenhalogen lamp)
- Spatial Characterization
 - MTF, Field of View
- Boresight and Spectral Stability
- Diffuser BTDF
 - On selected wavelengths and spatial positions
- NIST Traceable Radiometric Calibration
 - GEMS in ambient or thermal condition
 - Large Spherical Source(LSS) integrating sphere illumination
- Polarization Sensitivity
 - Rotatable polarizer

Validation Network

- Ground-based network for gas measurements
 - PANDORA network
 - MaxDOAS
 - AirKOREA and nation-wide network in Asian countries
 - EANET
- Aerosol network
 - AERONET
 - SKYNET (Japanese lead, Asia wide)
 - SONET (China)
- LIDAR network
 - KALION
 - NIES LIDAR network
- Airborne Campaigns
 - KORUS-AQ etc.
- Collaboration under discussion
 - China (Hong Kong), Vietnam,

KORUS-A@ Campaign(May-Jun 2016) : VAL activities

Synergistic products

- ✓ 24 hr Asian dust monitoring over dark and bright surface
- ✓ Cloud morphology (thickness, fraction, type ...)

Summary

- GEMS onboard the Geo-KOMPSAT-2B is expected to provide inform ation on aerosol and O₃ together with their precursors in high spatial and temporal resolution
 - O₃ NO₂ HCHO SO₂ AOD/AI/AEH CHOCHO
 - Clouds (CP, CRF), surface reflectance, UVI
- The predicted performance for the retrieval of trace gas column densities from the current design of GEMS satisfies the product accuracy requirements of NO₂, HCHO, stratospheric O₃, but partially satisfy for SO₂ and tropospheric O₃. Meanwhile, the performance is expected to be poor in winter near Korea in particular.
- Careful consideration of aerosol is required to retrieve trace gas concentration from geostationary satellite remote sensing, especially for absorbing aerosols in particular.
- Preflight tests to characterize stray light, polarization, spectral accuracy, diffuser BTDF etc can provide more accurate analysis on the GEMS performance.
- Synergy with AMI and GOCI-2 will provide more reliable products of aerosol and cloud products, which eventually improve the accuracy of trace gas column density.

Acknowledgement

GEMS Science Team

Ministry of Environment (MoE) NIER, MoE KEITI, MoE

Korea Meteorological Administration (KMA)

Korea Ocean R&D Institute (KORDI)

Ministry of Science, ICT & future Planning (MSIP) KARI

GEMS Science Team

Changwoo Ahn Jay Al-Saadi P.K. Bhartia Kevin Bowman **Greg Carmichael** Kelly Chance Mian Chin Yunsoo Choi Ron Cohen **Russ Dickerson David Edwards** Annmarie Eldering Liang Xu Ernest Hilsenrath Ping Yang Daneil Jacob Scott Janz Glen Jaross Siwan Kim Thomas Kurosu Qinbin Li

Xiong Liu **Randall Martin** Steve Massie Jack McConnel* Tom McElroy **Jessica Neu Mike Newchurch** Stan Sander **Jochen Stutz Omar Torres** Dong Wu Dusanka Zupanski Milija Zupanski

Beri Ahlers Heinrich Bovensmann John Burrows Marcel Dobber Joerg Langen **Pieternel Levelt Ulrich Platt Piet Stamnes Pepijn Veefkind** Ben Veihelmann Thomas Wagner

Myung Hwan Ahn Ji-hyung Hong Yong Sang Choi Sang-kyoon Kim Myeongjae Jeong Chang Keun Song Jae Hwan Kim Lim Seok Chang Young Joon Kim Jae-Hyun Lim Hanlim Lee – – K.J. Moon Kwang Mog Lee Rokjin Park M.H. Lee H.W. Seo Seon Ki Park Sukjo Lee Chul Han Song Jung Hun Woo Jin Seok Han Jung-Moon Yoo Youdeog Hong J.S. Kim Seung Hoon Lee Hajime Akimoto Sang Soon Yong Sachiko D.G. Lee Hayashida J.P. Gong Hitoshi Irie Dai Ho Ko Yasko Kasai S.H. Kim Kawakami Shuji J.H. Yeon

Y.C. Youk

Charles Wong

Sangseo Park, Mijin Kim, Ukkyo Jeong, M.J. Choi, J.H. Kim, S.J. Ko; Ju Seon Bak, Kanghyun Baek; Hyeong-Ahn Kwon, H.J. Cho; K.M. Han, Jihyo Chong, Kwanchul Kim; J.H. Park, Y.J. Lee ..., Bo-Ram Kim, M.A. Kang, J.H. Yang, Sujeong Lim, S.W. Jeong ;