Multi Sensor Reanalysis (MSR) of total ozone and ozone profiles

Ronald van der A, Marc Allaart, Henk Eskes, Michiel van Weele, Jacob van Peet

Royal Netherlands Meteorological Institute (KNMI)
Introduction

MSR version 1:
• Total ozone data record 1979-2008
• van der A et al. ACP, 2010

MSR version 2:
• Total ozone data record extended to 1970-2012
• van der A et al. AMT, 2015

Operational MSR updates:
• Part of Copernicus Climate Change Service (C3S-ozone)
• Will start soon
Methodology:
Constructing the Multi-Sensor Reanalysis of ozone
Multi Sensor Reanalysis (MSR) of ozone

Assumption:
• The ground observations are on average a good approximation for the true values.

Procedure:
• All UV-VIS satellite data in the period 1970-2012 is used.
• Step 1: Correct satellite data to avoid biases. The reference data that is chosen are ground data observations from reliable WOUDC stations.
• Step 2: Satellite data is assimilated in a chemical-transport model to achieve complete global and temporal coverage.

Availability:
• Multi Sensor Re-analysis (MSR) data available at www.temis.nl
• Published in:

Reference data

Reference data set:

- From WOUDC 91 ground stations are selected with a long and reliable dataset (*Fioletov et al.*, 2008)
- Dobson & Brewer instruments
- Dobson data corrected for temperature dependence (*Kerr et al.*, 2002)
Corrections satellite data

Expected dependencies of satellite data:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Physical mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar zenith angle</td>
<td>Light path</td>
</tr>
<tr>
<td>Viewing zenith angle</td>
<td>Scan mirror</td>
</tr>
<tr>
<td>Effective temperature</td>
<td>O3 cross-section</td>
</tr>
<tr>
<td>Time (trend)</td>
<td>Instrument degradation</td>
</tr>
<tr>
<td>Offset</td>
<td>Calibration</td>
</tr>
</tbody>
</table>

- Generate time series of the satellite data sets for all stations.
- Fit all time series as function of the 5 parameters.
- Apply corrections as function of the fit parameters to construct the Multi-Sensor Reanalysis (MSR) level 2 data
Correction of level 2 data

Satellite minus Brewer observations for the Uccle ground station
Data assimilation of the MSR level 2 data

- Level 2 data is on satellite footprint. Location measured on irregular times. Regions without observations exist.

Therefore, data assimilation used to create a homogeneity data record

Data assimilation:
- Kalman-type data assimilation scheme using the TM model
- Meteo: ECMWF ERA-interim winds, temperatures
- Stratospheric chemistry parametrizations (Cariolle v. 2.9)
- Starting in 1970 by including BUV data. The reanalysis period is 43 years (!).

- Output:
 - Total ozone field every 6 hours
 - Spatial grid is 1 x 1 degree (resolution is 0.5 degree)
 - Daily local time ozone field at noon (for UV index)
Analysis of results for the MSR version 2
Examples of error fields for
- 26-06-1971 (BUV)
- 26-06-1984 (TOMS)
- 26-06-2006 (almost all sat.)
OmF, OmA as function of latitude and solar zenith angle in January 2008
OmF of the Multi-Sensor Reanalysis (MSR2)

Gridded for January 2008
MSR 2 extended with Dobson

ground observations

MSR2

MSR2 extended with Dobson
October monthly mean 1970-2015 (MSR2+)
Comparison to AC&C/SPARC database
Comparison of MSR and AC&C/SPARC

ECV ozone comparison for 1980-2010:
• Ozone satellite observations: MSR2
• Ozone database from AC&C/SPARC (for CMIP5)
 – No dynamics included
 – Zonal averaged stratosphere
Intercomparison with SPARC data over the Antarctic (Sep.-Nov.)
AC&C SPARC ozone versus MSR2
(annual zonal mean)
BAMS climate report 2015

NH March (60°N-90°N)

SH October (60°S-90°S)

DU

WOU DC
SBUV V8.6 NASA
SBUV V8.6 NOAA
GOME/SCIA GSG
GOME/SCIA GTO
MSR2
preliminary WOU DC data in 2015

1. Application to ozone profiles
2. Conclusions
We apply a similar method to ozone profiles

• Reference is ozone sonde database (WOUDC)
• Correction per layer as function of SZA, VZA, and time
• 3D data assimilation of simultaneous instruments.
• To be processed within O3-CCI project:
 1995-2012 (GOME, GOME2, OMI, SCIA, IASI)
First results of 3D ozone field (1)

Examples of retrieved ozone layers on 7 January 2008

Ozone in 0-6 km layer

Ozone in 25-30 km layer
Monthly mean ozone of January 2008 in 0-6 km layer
Summary

Multi Sensor Reanalysis (MSR2) of total ozone:

- 18 total ozone data sets from BUV, TOMS, SBUV, GOME, SCIAMACHY, OMI and GOME-2 are corrected by comparison with Brewer and Dobson data (WUDC).
- An improved data assimilation scheme has been developed and verified by detailed OmF analysis.
- The MSR data record is extended to the period **1970-2012** on a 1x1 degree grid (0.5 degree resolution) and 6 hour time steps.
- A similar method has been applied to nadir ozone profiles. First results are available.

Outlook

- MSR-methodology applied to ozone profiles observed by satellite (results available via CCI-ozone project)
- Operational MSR updates via the Copernicus Climate Change Service (C3S)