Measuring Tropospheric Ozone with MLS and OMI

Gordon Labow
Jerry Ziemke
P.K. Bhartia

October, 13, 2016
Maps of tropospheric column ozone during the month of largest amounts in the Northern Hemisphere (July) and Southern Hemisphere (October).

Where does all this tropospheric ozone in mid-latitudes come from?

Answer: STE, lightning, pollution, and biomass burning.
Hohenpeissenberg 47.8,11.0 NMIN=3

OMI/MLS Minus Sonde = -1.8 DU

Diff RMS = 3.63 DU

Nairobi -1.3,36.8 NMIN=3

OMI/MLS Minus Sonde = 0.52 DU

Diff RMS = 2.03 DU

Samoa -14.2,170.5 NMIN=3

OMI/MLS Minus Sonde = -0.84 DU

Diff RMS = 2.24 DU
Comparisons to OMPS Nadir Mapper-Limb Profiler Tropospheric Ozone
OMPS NM-LP: Tropospheric Ozone Anomalies During the 2015-2016 El Nino

OMPS NM-LP

OMI - MLS
A significant trend!
3 or 4 Possibilities:

1) OMI is drifting and/or
2) MLS is drifting

OR

The change is real
On cloud-off cloud method
OMI Minus MLS Deseas SCO 15S-15N, 120W-120E

Stratospheric columns

< 1 DU/decade

Dobson Units

Year

< 1 DU/decade
So we believe the trend is predominately real.

OMI is drifting by a small amount

Work in progress

(work will be corrected in V9 processing)

What do we have to offer the climate community?

- 60N-60S tropospheric ozone maps (weekly/monthly)
- 25N-25S tropospheric ozone maps (daily)
- Long-term tropospheric ozone trends
 2004-present with MLS/OMI and 1979-2003 with cloud slicing method (on-cloud/off-cloud) from mappers for 15N-15S only.
- Will use OMPS when AURA ends
DATA: First and last 5-year periods from October 2004 through May 2016

- Good agreement
- Very small mean offset of ~2 DU
- No measurable drift
Deseasonalized Column Ozone

- OMI/MLS Tropo Column Ozone
- GMI CTM Tropo Column Ozone (fixed emissions)

Year:

Dobson Units:
-3 -2 -1 0 1 2 3