

Total Carbon Column Observing Network

Paul Wennberg, David Griffith, Justus Notholt, Tae-Young Goo & TCCON network partners

The carbon cycle

TCCON - The Total Carbon Column Observing Network Paul Wennberg, Justus Notholt, David Griffith, co chairs > 20 partners / site PIs total carbon column observing network Nv-Ålesund Eureka Poker Flat Sodankylä Trout Lake Oxfordshire Bark Falls Karlsruhe Bremen **Bialystok** Park Falls Rikubetsu OrléansGarmisch Paris Four Corners Anmyeondo ▲ Indianapolis Edwards Tsukuba Lamont Pasadena / JPL Hefei Saga Izaña Philippines Manaus Darwin Ascension Island Réunion **Operational Site** Wollongong **Future Site Previous Site** Lauder

TCCON: Remote sensing of total column CO_2 , CH_4 , N_2O , CO ...

- Direct-sun solar absorption spectroscopy in the near IR
- Retrieve total column amounts
- Derive column average dry air mole fractions (e.g. X_{co2})
 - Using column O_2 as internal standard
 - $X_{CO2} = CO_2 / O_2 \times 0.2095$

Why TCCON? Why total column measurements?

- Total column measurements :
 - Are less influenced by local sources and sinks than in situ
 - . They have a larger footprint
 - Are less influenced by vertical transport
 - Do not alias diurnal and seasonal boundary layer transport into the measured column amount
- Is useful in 2 main ways
 - As a standalone network model comparisons
 - For satellite validation, past, present and future
 - SCIAMACHY, GOSAT, OCO-2, Tansat ...
- Must be:
 - accurate and precise
 - traceable to WMO mole fraction scales
 - To compare with in situ scales

Why do we need to be so accurate?

2-box model of global atmosphere For a CO_2 gradient of 1 ppm:

- Exchange time 1 year (Interhemispheric transport)
 - Flux CO₂ ~ 1 Pg yr⁻¹
- Exchange time 1 month (E-W transport)
 - Flux CO₂ ~ 10 Pg yr⁻¹
- cf total budget ~ 9 Pg yr⁻¹
- We aim for CO₂ accuracy and lack of bias between measurements of
 0.1 ppm or better
 - ~ 0.1 ppm or better

TCCON station footprints (Dietrich Feist, MPI)

Near IR solar absorption spectrum overview

Analysis by spectrum fitting (GFIT, profile scaling) e.g. 6230 cm⁻¹ CO₂ band

Raw daily column measurements Wollongong, clear sky day

Precision and accuracy: CO_2

- Precision achieved: repeatability <0.2 ppm
 - 1- σ repeatability, single measurements
- Accuracy by comparison of TCCON total columns with integrated aircraft in situ profiles using WMO-calibrated instruments
 - eg. HIPPO, TWP-ICE, IMECC
 - Extrapolated to top and bottom of the atmosphere

Validation - relation to WMO scales

- eg TWP-ICE Darwin 2006
- CO₂ analyser on board
 - 1Hz CO₂, 0.1ppm precision
- Integrate vertical profile
- Also HIPPO, all species

TCCON validation against aircraft profiles CO_2 and CH_4

CO₂ (1σ 0.1%)

 Further detail:
 Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data, Atmos. Meas. Techn., 3, 1351-1362.

TCCON validation against aircraft profiles CO and N_2O

 Further detail:
 Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data, Atmos. Meas. Techn., 3, 1351-1362.

Uncertainty overview (CO_2)

Effect	relative	Total column
Repeatability (spectrum- spectrum)	0.05%	0.2 ppm (1σ)
Comparability across network	0.1%	0.4 ppm
Uncorrected airmass dependence		0-2 ppm (high sza) <0.5 ppm (GOSAT)
Ghosts	< 0.2%	< 1ppm most sites
ILS	< 0.2%	< 1 ppm
Smoothing error (profile shape)	< 0.1%	< 0.4 ppm

More detail:

Wunch, D., et al. The Total Carbon Column Observing Network (TCCON), Phil. Trans. Roy. Soc. A, 369, 2087-2112, 2011.

Satellite validation

- Primary validation for • GOSAT, OCO-2, SCIAMACHY GHG columns
- Several GOSAT retrieval algorithms
 - SH TCCON used to help derive satellite bias correction
 - TCCON used to assess algorithms (GHG-CCI)

SH Measurement-model comps

 Comparison to CarbonTracker 2011 shows modelmeasurement mismatch at Darwin in 2005-6 wet season

www.tccon.onrl.gov

New and Upcoming TCCON Stations

- Newly operational: Anmyeondo (South Korea)
- Setup phase: Burgos (Philippines), Hefei (China)

Anmyeondo, Korea

 Anmyeondo is operational TCCON site located at mid-west Korea
 Lat/Lon/Alt: 36°32N / 126°19E / 30 maLl
 A: WMO Regional GAW station
 B: FTS site

IFS-125HR / A547N solar tracker / Camtracker
InGaAs, Si diode / CaF2 / NIR source

✤OASIS (Operational Automatic System for Intensity of Sunray)

Comparison of XCO2 from FTS, OCO-2 and GOSAT at the Anmyeondo site

TCCON Software Update (from 2014)

- GGG2014 data publicly available via CDIAC: ftp://tccon.ornl.gov/2014Public/documentation/
 - Permanent archiving
 - DOIs assigned to the datasets (please cite)
 - netCDF format
- Updated spectroscopy
- Updated solar line list
- Updated a priori profiles (small changes)
- Updated TCCON calibration curves

See also: https://tccon-

wiki.caltech.edu/Network_Policy/Data_Use_Policy/Data_Description

Data use policy Co-authorship and acknowledgement

- 1. Data are publically available
- 2. For planned publishable work, *please contact site PIs*
 - 1. Abstract of intent
 - 2. Allow site PI inputs as appropriate
- 3. Co-authorship or acknowledgement case by case
- 4. Manuscript drafts to TCCON PIs well in advance
 - 1. Allow reasonable time for comment
- 5. Future publication in data journal/archives with DOI?
- 6. See wiki reference: https://tccon-wiki.caltech.edu/Network_Policy/Data_Use_Policy

TCCON data uptake and usage

Modelling

Inversions, carbon tracker ...

Source-sink estimations and distributions

Emissions verification

Satellite validation

GOSAT, OCO-2, CarbonSat ...

Satellite retrieval algorithms

> 120 TCCON publications

Conclusions

- TCCON is growing and starting to cover more of the gaps on the carbon cycle map.
- TCCON data continue to be heavily used in validation and science.
- Data delivery to archive has been timely
- Network continues to expand:
 - Missing: some parts of China, India, Siberia, Brazil
- TCCON is mission-critical to a number of current and future GHG satellite missions.
- TCCON data is freely available. Observe the data policy!
- While TCCON data is free, operation of TCCON is not. Setting up and running a TCCON station anywhere in the world for 10 years: ~1.5 MEUR