Geostationary CO2 concepts:
G3E – Geostationary Emission Explorer for Europe

A. Butz, J. Orphal, H. Bovensmann, T. von Clarmann,
F. Friedl-Vallon, F. Hase, G. Hechenblaikner,
T. Knigge, R. Münzenmayer, O. Squalli Houssini, F. Schmülling

1Deutsches Zentrum für Luft- und Raumfahrt (DLR) e. V., Oberpfaffenhofen, Germany
2Karlsruhe Institute of Technology (KIT), Karlsruhe Germany
3Institute of Environmental Physics, University of Bremen, Germany
4Airbus DS GmbH, Friedrichshafen, Germany
5Deutsches Zentrum für Luft- und Raumfahrt (DLR) e. V., Bonn, Germany
Benefit of a geostationary observer

Contiguous spatial and temporal imaging

2014-07-01 00 UT

XCO$_2$ fields from MACC @ ECMWF, 0.2°x0.2°, 3h

Courtesy by V.-H. Peuch, M. Razinger, A. Agusti-Panareda
Benefit of a geostationary observer

Contiguous spatial and temporal imaging

- **Spatiotemporal context**: disentangle transport, boundary conditions and sources/sinks

- **Local horizontal contrast**: emissions of localized sources

- **Local temporal contrast**: diurnal cycle, source specification

- **Sampling density**: less sampling bias (Don’t miss events).
Benefit of a geostationary observer

Contiguous spatial and temporal imaging

Performance of a geostationary mission, geoCARB, to measure CO₂, CH₄ and CO column-averaged concentrations

I. N. Polonsky¹, D. M. O'Brien², J. B. Kumer³, C. W. O'Dell⁴, and the geoCARB Team⁵

[Polonsky et al., AMT, 2013]

Constraining regional greenhouse gas emissions using geostationary concentration measurements: a theoretical study

P. J. Rayner¹, S. R. Utembe¹, and S. Crowell²

[Rayner et al., AMT, 2014]

Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment

A. Butz¹, J. Orphal¹, R. Checa-Garcia¹, F. Friedl-Vallon¹, T. von Clarin², H. Bovensmann², O. Hasekamp³, J. Landgraf³, T. Knipp³, D. Weile³, O. Sqalli-Houssini³, and D. Kemper³

[Butz et al., AMT, 2015]

Potential of a geostationary geoCARB mission to estimate surface emissions of CO₂, CH₄ and CO in a polluted urban environment: case study Shanghai

Denis M. O’Brien¹, Igor N. Polonsky², Steven R. Utembe³, and Peter J. Rayner³

[O’Brien et al., AMT, 2016]
Geostationary Emissions Explorer for Europe (G3E)

G3E: 4-channel grating spectrometer

(lots of design choices borrowed from S5, S4, CarbonSat ...)

Total volume \(L \times W \times H \sim 1.6 \times 1.3 \times 0.8 \text{ m}^3\)

[Butz et al., AMT, 2015]
Geostationary Emissions Explorer for Europe (G3E)

[Butz et al., AMT, 2015]

Basic G3E specs:

- **Geostationary** orbit
- 2h per scan over Europe
- 2 x 3 km² ground pixels (at ~50° N/10°E, 1.7 x 1.7 km² at sub-satellite)
- XCO_2, XCH_4: anthropogenic (precision <0.5%) + biogenic (accuracy <0.5%)
- XCO: source/transport attribution (precision/accuracy < 10%)
- Support: aerosols, fluorescence
Alternative instrument concept investigated: imaging FTS

- **Geostationary** orbit
- 2h per scan over Europe, 900s dwell time for each zone x 8 zones
- 375 (NS) x 313 (EW) effective detector pixels
- 2 x 3 km\(^2\) ground pixels (at ~50° N/10°E, 1.7 x 1.7 km\(^2\) at sub-satellite)
- \(\text{XCO}_2, \text{XCH}_4\): anthropogenic (precision <0.5%) + biogenic (accuracy <0.x%)
- \(\text{XCO}\): source/transport attribution (precision/accuracy < 10%)
- Support: aerosols, fluorescence

[Butz et al., AMT, 2015]
Alternative instrument concept investigated: imaging FTS

- Geostationary orbit
- 2h per scan over Europe
- 375 (NS) x 313 (EW) effective detector pixels
- 2 x 3 km² ground pixels
- XCO₂, XCH₄: anthropogenic (precision <0.5%)
- XCO: source/transport attribution (precision/accuracy < 10%)
- Support: aerosols, fluorescence

[Butz et al., AMT, 2015]
Alternative instrument concept investigated: imaging FTS

- Geostationary orbit
- 2h per scan over Europe
- 375 (NS) x 313 (EW) effective detector pixels
- 2 x 3 km2 ground pixels
- XCO_2, XCH_4: anthropogenic (precision <0.5%) + biogenic (accuracy <0.x%)
- XCO: source/transport attribution (precision/accuracy < 10%)
- Support: aerosols, fluorescence

Major issues with iFTS concept:

- Pointing must be stable during 900s dwell time, at least during single-shots to be coadded.
- Read-out frequency of 2D detector array in the order of ~1kHz.
- Data rate of ~1 Gbyte/s requires smart onboard processing

Therefore: priority to grating concept.
G3E: simulated soundings

[Butz et al., AMT, 2015]

<table>
<thead>
<tr>
<th>Band ID</th>
<th>Spectral range [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR</td>
<td>745 - 775</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>1585 - 1675</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>1925 - 2082</td>
</tr>
<tr>
<td>SWIR-3</td>
<td>2305 - 2385</td>
</tr>
</tbody>
</table>

![Graph showing spectral range for NIR with bands NIR, SWIR-1, SWIR-2, and SWIR-3 with their respective spectral ranges.]
G3E: simulated soundings

<table>
<thead>
<tr>
<th>Band ID</th>
<th>Spectral range [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR</td>
<td>745 - 775</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>1585 - 1675</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>1925 - 2082</td>
</tr>
<tr>
<td>SWIR-3</td>
<td>2305 - 2385</td>
</tr>
</tbody>
</table>

[Butz et al., AMT, 2015]
G3E: simulated soundings

[Butz et al., AMT, 2015]

<table>
<thead>
<tr>
<th>Band ID</th>
<th>Spectral range [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR</td>
<td>745 - 775</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>1585 - 1675</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>1925 - 2082</td>
</tr>
<tr>
<td>SWIR-3</td>
<td>2305 - 2385</td>
</tr>
</tbody>
</table>
G3E: simulated soundings

[Butz et al., AMT, 2015]

<table>
<thead>
<tr>
<th>Band ID</th>
<th>Spectral range [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR</td>
<td>745 - 775</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>1585 - 1675</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>1925 - 2082</td>
</tr>
<tr>
<td>SWIR-3</td>
<td>2305 - 2385</td>
</tr>
</tbody>
</table>
Trial ensemble: MODIS albedo (500 m x 500 m) sampled at 0.1° x 0.1° for a European albedo ensemble

G3E: simulated noise performance

[Butz et al., AMT, 2015]
Trial ensemble:
MODIS albedo (500 m x 500 m) sampled at 0.1° x 0.1° for a European albedo ensemble G3E: simulated noise performance

[Butz et al., AMT, 2015]
Trial ensemble:
MODIS aerosol/albedo
+ Calipso cirrus
+ ECHAM5-HAM aerosol types/heights

If G3E was in LEO at 12UT
Pretend GEO-view (VZA, SZA) on Europe

Analogue to our retrieval simulations for OCO-2, GOSAT, S5P, S5 [e.g. Butz et al., RSE, 2012]
- **Goal:** contiguous imaging of GHG (+support: XCO, aerosols, fluorescence) to disentangle and quantify anthropogenic and biogenic sources and sinks, disentangle transport

- **Mission concept:** 4-channel grating spectrometer in GEO (extensive LEO/GEO heritage: S5, S4, CarbonSat, ...; data reduction)

- **It is feasible with accuracies comparable to LEO.**

- **Synergies:** MTG-FCI/IRS/S4 – clouds, aerosols, SWIR-TIR CO, process markers (NO_2, SO_2, ...)