

An Air Quality and Greenhouse Gas Mission focused on Northern Regions

Ray Nassar^{*} and Chris McLinden

Environment and Climate Change Canada *ray.nassar@canada.ca

CEOS ACC-12, Yonsei University, Korea, October 2016

Canadian HEO Mission: Background, History

- Enormous benefits to GEO + LEO constellation of missions, but neither is well-suited for continuous high latitude coverage
- Two or more satellites in a Highly Elliptical Orbit (HEO) configuration can be used for quasi-geostationary coverage of the high latitudes
- There is potential for a Canadian **HEO** mission focused on the north
- The Polar Communications and Weather (PCW) mission was considered as early as 2007, but the partnership is now unlikely
- Canadian Space Agency (CSA) also considered additional instrument enhancements to PCW under the Polar Highly Elliptical Orbit Science (PHEOS) program
- The Weather, Climate and Air quality (**WCA**) mission concept was an atmospheric research option that completed Phase 0 and A in 2012 (PCW-PHEOS-WCA PI: Prof Jack McConnell, York U, now deceased)

Environnement et Changement climatique Canada

PCW-PHEOS-WCA Bands, Species, Coverage

			Band (μm)	Band (cm ⁻¹)	Resolution	Target species
Compliant		1	6.7 – 14.2	700 - 1500	0.25 cm ⁻¹	T, H_2O , O_3 , CO , CO_2 , C H_4 , HNO ₃ , C H_3OH , HCOOH, PAN, HCN, N H_3 , SO ₂
		2	3.7 – 5.6	1800 - 2700	0.25 cm ⁻¹	
	FTS	3a	1.66 - 1.67	5990 - 6010	0.25 cm ⁻¹	CH ₄ columns
		3b	1.60 - 1.67	5990 - 6257	0.25 cm ⁻¹	CO ₂ and CH ₄ columns
		4	0.760-0.766	13060-13168	0.50 cm ⁻¹	O ₂ A band (p _{surf} , aerosol)
	UVS		0.280-0.650		~ 1 nm	O_3 , NO ₂ , aerosol, BrO, HCHO, SO ₂ ,

Fourier Transform Spectrometer (FTS) / UV-Visible Spectrometer (UVS)

For details see: Nassar, Sioris, Jones, McConnell (2014), Satellite observations of CO₂ from a highly elliptical orbit for studies of the Arctic and boreal carbon cycle, J. Geophys. Res., 119, 2654-2673, doi:10.1002/2013JD020337 and PCW-PHEOS-WCA references therein.

Environment and Envir Climate Change Canada Char

Environnement et nada Changement climatique Canada Potential PHEOS-WCA-FTS Fields of Regard

Update on Recent Canadian Activities

- Continual development of imaging FTS technology (2016-2017) for GEO and HEO applications (by ABB, funded by CSA), with plans for stratospheric balloon testing of an IFTS to measure CO₂ and CH₄ in 2018
- New CSA and Environment and Climate Change Canada (ECCC) mission concept study: "Air Quality and GHG mission focused on Northern Regions" (2016-2017) builds off past work. Have enlisted an industry team led by ABB (with Airbus, MDA and other subcontractors) to re-examine:
 - Orbit: HEO remains the baseline, but other possibilities still on the table
 - Bands: GHG and AQ now higher priority than meteorology -> still need TIR?
 - Advantages of FTS vs. grating technology for imaging
 - Full instrument trade studies (bands, spectral/spatial resolution ...)
 - Assess costs standalone mission, hosted payload, partnerships
- This new Northern mission concept has stricter AQ and GHG precision and horizontal resolution requirements than PCW-PHEOS-WCA to increase the value of the observations for estimating northern (~50-90°N) anthropogenic emissions and link to requirements of international LEO/GEO missions

Summary and Conclusions

- Ongoing efforts and funding in Canada toward a satellite mission to observe air quality and greenhouse gases in northern regions as demonstrated by continual technology development and a "Concept Study for an AQ and GHG Mission focused on Northern Regions"
- HEO remains the leading option for quasi-geostationary high latitude coverage, giving some mid-lat overlap with GEO missions
- Observing requirements set by ECCC and CSA align with other missions in the CEOS-ACC constellation and proposed missions being discussed as components of a future GHG constellation
- A strong industry team is currently assessing design trade-offs
- Partnerships with other countries/agencies may be needed to make a quasi-geostationary northern AQ and GHG mission a reality
- Contacts: <u>ray.nassar@canada.ca</u> (Mission Concept / GHGs / IFTS) <u>chris.mclinden@canada.ca</u> (Air Quality)

