

CO and CH₄ from TROPOMI on Sentinel-5 Precursor

CEOS-ACC-12 Meeting, NIER, Seoul Korea, 14 Oct 2016

B. Veihelmann¹, P. Ingmann¹, J. Landgraf²

ESA ESTEC, Noordwijk, The Netherlands
 SRON Netherlands Institute for Space Research, Utrecht, The Netherlands

ESA UNCLASSIFIED - For Official Use

Copernicus The European contribution to GEOSS

Services Component – led by EC

٠

Relies on data from in-situ and space component

In-situ Component – led by EEA

 Observations mostly within national responsibility, with coordination at European level

Space Component – led by ESA

Sentinels - EO missions developed specifically for Copernicus

Plus Contributing Missions - EO missions built for purposes other than Copernicus but offering part of their capacity to Copernicus

The Copernicus Mission Sentinel-5 Precursor

Pre-operational, precursor to Sentinel-5

- Daily global observations of atmospheric composition
- Loose formation with Suomi-NPP/JPSS
- For air quality and climate services
- Payload = TROPOspheric Monitoring Instrument (TROPOMI)
- Jointly developed by Airbus Defense and Space Netherlands, KNMI, SRON and TNO, on behalf of the NSO and ESA.
- Planned launch date 2017
- 7 year design lifetime

TROPOMI on S5P

UV-VIS-NIR-SWIR nadir view grating spectrometer

- Spectral range: 270-500, 675-775, 2305-2385 nm
- Spectral Resolution: 0.25-1.1 nm
- Spatial Resolution: 7x7km²
- Global daily coverage at 13:30 local solar time

Assembled TROPOMI instrument

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 4

TROPOMI

S5P Level-2 Products (operational)

Species	Characteristics	expected	
_ F		accuracies	
	vertical profile	10-30 % (6 km res.)	
Ozone - O ₃	total column	3.5 – 5 %	
	tropospheric column	25%	
Nitrogon diavida NO	total column	<10%	
Nitrogen dioxide - NO ₂	tropospheric column	25-50%	
Culmbur diavida CO	SO_2 enhanced	30 %	
Sulphur dioxide - 50_2	total column	30 - 50 %	
Formaldehyde - HCHO	total column	40 - 80 %	
Methane - CH ₄	total column	1.5 %	
Carbon monoxide - CO	total column	< 15 %	
Cloud	optical depth, fraction, height	<20 % (all parameters)	+ Cloud data from VIIRS imager on Suomi-NPP
Aaraaal	UV absorption index	~1 AAI	
Aerosoi	layer height	< 100 hPa	and the second second
Surface UV	spectral irradiance, UV index	TBD	

÷

S5P Level-2 Products (research)

Species	Characteristics
Aerosol	fine mode optical depth
Glyoxal - CHOCHO	total column
Surface	effective reflectance
Water vapour - H ₂ O	total column
Bromine oxide - BrO	total column
Chlorine dioxide - OClO	total column
Iodine oxide - IO	total column
Semiheavy water - HDO	total column

...and potentially many others including e.g. SIF (solar induced fluorescence)

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 6

European Space Agency

÷

₩

The 2.3 µm spectral range

Spectral range contains information on:

- Water
- HDO
- Methane
- Carbon monoxide

Quality requirement for operational data product:

CO: 10 % precision / 15 % accuracy

CH₄: 1 % precision / 1 % bias

٠

Operational CH₄ algorithm: RemoTeC

References: Butz et al., 2009; 2010; 2011; Schepers et al., 2012;2016 Guerlet et al., 2013; Hu et al., 2016

- Cloud filtering using co-located VIIRS measurement
- Remaining scattering by aerosols and thin cirrus is accounted by the retrieval (O₂ A band in the NIR, and strong CH₄ bands in the SWIR)
- Height of a scattering layer, size and number of scattering particle, H₂O, CH₄, CO, surface albedo, spectral calibration, SIF
- 10 seconds per ground pixel

CH₄ bias estimate for four-day ensemble **@esa** simulated clear sky measurements

→ For 94 % of all cases bias < 1 %, rms error 0.55 %</p>

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 9

European Space Agency

Slide: J. Landgraf, SRON

Operational CO algorithm: SICOR

Band 1: 2315-2324 nm

Non-scattering retrieval, difference between retrieved CH₄ and a priori knowledge used to filter on high and optically thick clouds

Band 2: 2324-2338 nm

Physics-based retrieval:

Fit parameters: CO, H_2O , scattering optical depth and scattering layer height, using a priori CH_{4.} Retrieval uses a two stream RTM.

Processing time: 0.15 seconds per ground pixel

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 10

Reference: Gloudemans et al., 2009 / Vidot et al., 2012, Borsdorff et al., 2014, 2015 Landgraf et al., 2016

٠

TROPOMI orbit ensemble (1)

simulated measurements with resampled MODIS cloud data to TROPOMI pixel size

Slide: J. Landgraf, SRON

cloud fraction

cloud optical depth

cloud top height

٠

TROPOMI orbit ensemble – CO column

Slide: J. Landgraf, SRON

20

18

16

14

12

10

8

Biomass burning event central Africa

Overall very good precision

Small biases with some outliers <8% due to simple cloud model

÷

Status of Sentinel-5P

Activity	Status
TROPOMI on-ground calibration and characterisation from Dec 2014 until Apr 2015	\checkmark
Instrument into S5P satellite integration in May 2015	\checkmark
Assembly, integration and testing (AIT) until early 2016	\checkmark
Flight acceptance review (FAR) – Mar 2016	\checkmark
Delivery to launch site (Plesetsk/Russia) – early 2017	?
Launch window opens end March 2017	?

₩

+

÷

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 13

S5P CalVal - Some Key Findings

- Ozone profile and total column well covered, except for the required measurement spatial representativity and specific environmental conditions
- Tropospheric ozone, NO₂ and formaldehyde well covered but lacking global validation and in particular for the tropics
- SO₂ lacks redundancies and validation capabilities for high SO₂ pollution
- CO and methane validation at risk, in particular as a result of funding issues for validation, e.g. TCCON
- Clouds and aerosol layer height well covered
- AAI validation only against other satellites
- Level 1b lack any redundancy and covering only UV/VIS

Conclusion

Sentinels-5P

- Embarks the UVNS instrument TROPOMI on a dedicated satellite
- Will provide global daily atmospheric composition observations incl. CO and CH₄
 - for the Copernicus Atmosphere Monitoring Service (CAMS)
 - for the Copernicus Climate Change Service (C3S)
 - for the future Emergency Management Service
- Is part of the CEOS AQ Constellation
 - acts as a "travelling standard" between the GEOs (TEMPO, S4, GEMS)
 - target common formats and static aux data, coordinated cal/val activities, reviews, ...
- Bridges the gap between OMI on Aura and Sentinel-5
- Will fly in "loose formation" with Suomi NPP to use VIIRS for cloud clearing
- Is ready for launch, wait for launcher availability, launch scheduled in 1st Q 2017

÷

Thank You

Any Questions?

Email: <u>ben.veihelmann@esa.int</u> http: <u>www.esa.int/copernicus</u>

*

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 16

Joint Operation of S5P with S-NPP

TROPOMI SWIR channel L2 processing (CH₄) relies on accurate, high resolution cloud mask data

- phased operation with NASA's Suomi-NPP envisaged
- routine delivery of S-NPP/ VIIRS products to PDGS

Suomi-NPP: Launched Oct. 2011

٠

S5P - Swath

ESA UNCLASSIFIED – For Official Use

ESA Presentation | DD/MM/YYYY | Slide 18

= II 🛌 == ++ II == 🚝 == II II == == 📰 🛶 💷 II == == II 💥 🙌

Campaigns

Sep 2016 (presently on-going)

CINDI-2 Cabauw/NL - intercalibration of reference ground-based systems planned for NO₂, O₃, HCHO, O₄ → NDACC intercomparison, network setup
 Full suite of PANDORA, (MAX-)DOAS, Lidar, sunphotometer systems
 NO₂/O₃ sondes, in-situ systems, ...

2018

(1) Deployment of suite of airborne and ground-based mobile/imaging systems for small scale variability analysis and TROPOMI validation in urban environment (NO₂, SO₂, HCHO, aerosol) \rightarrow Romania, summer clear-sky

AirMap, NO₂ sonde, SWING UAV, mobile DOAS, fast azimuth scan MAXDOAS, PANDORA, ground-based imaging DOAS, aerosol

(2) Cloud impact campaign, instrumentation TBD → Cabauw/NL, Spring/summer/autumn

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 19

*

Launch Schedule of Atmospheric Sentinels

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Sentinel-5P																
Sentinel-4 - 1																
Sentinel-5-1																
Sentinel-4 - 2																
Sentinel-5 - 2																
Sentinel-5 - 3																

S5P and S5 = LEO S4 = GEO

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 20

*

Overview: ESA's CAMS Related Missions

MTG-S

IRS
Sentinel-4 UVN

MTG-I • FCI • LI MetOp-SG B • SCA

- MWI
- RO
- ICI
 Argos A

Argos-4

+SNPP

opernicus

MetOp-SG A

METimage
IASI-NG
MWS
RO
Sentinel-5 UVNS
3MI

S5P L-2 Algorithm Development

GOME(-2)-SCIAMACHY-OMI

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 22

*

+

S5P Spatial Resolution

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 23

European Space Agency

٠

-

Sentinel-5 Precursor Data Dissemination

Data Volume:

Product type	GB per Orbit	GB per day
Level 1b Radiance NRT/OFL	(2 x) 35.6	(2 x) 504
Level 1b Irradiances OFL	0.03	0.42
Level 2 NRT	4.27	60.6
Level 2 OFL	5.24	74.3
Total	45.1	639

Data Organisation

- Level 1b radiance is provided as separate files for each of the 8 bands
 - Plus UV-UVIS-NIR and SWIR solar irradiance product
- Each geophysical Level 2 parameter is provided in a dedicated product
- > Data format is netCDF-4 using Climate and Forecasting Metadata Standards
- Data format harmonisation with heritage and future Sentinels

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 24

*

Sentinel-5 Precursor Data Access

The Sentinel-5P core products list agreed with the Commission currently includes **Level-1** and **Level-2 products**

- Systematically provided on-line to ALL users in both Near-Real-Time (NRT, within 3 hrs from sensing, TBC) and Non-Time-Critical (NTC, within 14 days after sensing)
 - The relevant Copernicus Services will access the core products via the dedicated access point with strict guaranteed quality of service and associated Key Performance Indicators
 - Other users will access the core products via the Sentinels Scientific Data Hub. This will be provided without strict timeliness guaranteed albeit with expected nominal performances

Note:

expert users supporting the S5P commissioning and Cal/Val tasks will have access to the products (NRT and NTC) via specific mechanisms (e.g. open access data hub, dedicated data access points)

CEOS-ACC-12 | 13-14 Oct 2016 | NIER, Seoul, Korea | Slide 25

*