

CEOS-ACC- Séoul, October 14th, 2016

IASI AND IASI NG, MERLIN, MICROCARB FOR CH_4 AND CO_2 OBS. IN THE TROPOSPHERE

Prepared by C. DENIEL, CNES, France (<u>carole.deniel@cnes.fr</u>) With contributions from C. CREVOISIER (LMD), B. BOUSQUET , F CHEVALIER & FM BREON (LSCE)

&

Presented by C. Clerbaux, LATMOS/CNRS, France

French contribution to GG observation

IASI IASI-NG

Passive FTIR IASI-A, IASI-B IASI-C 2018

IASI-NG Phase C/D Operational mission (NRT + continuity) S5 component

Merlin

Lidar

DLR-CNES collaboration Phase B completed Demonstrator

CNES in charge of platform, system, launcher, and part of ground segment DLR in charge of payload, and part of ground segment Microcarb

Passive spectrometer SWIR

Context COP21 Phase A completed Demontrator Climate sentinel

Cathy Clerbaux

ECMWF CO₂ forecast

Total column average atmospheric CO₂

Credit: S. Massart/A. Agusti-Panareda, JN Thépaut

CO₂ SURFACE FLUXES:

Vegetation	(CTESSEL)
Fires	(GFAS)
Ocean	(inventory)
Anthropogen	ic (inventory)

IFS TRANSPORT PBL mixing

Advection Convection

CHEMISTRY Oxidation of CO (not yet represented in model)

Above background CO₂ Below background CO₂

TIR vs NIR/SWIR

NIR/SWIR Absorption

Thermal (TIR) Emission

Cathy Clerbaux

IASI on MetOp

LMD

<u>Objective</u>: to better understand surface sources and sinks of greenhouse gases and the related processes (transport, flux).

IASI contribution: mid-tropospheric columns of CO₂, CH₄ over both land and sea, day and night.

Methods: non linear inference scheme for CO₂ and CH₄

Chédin et al., 2003; Crevoisier et al., GRL, 2004; ACP 2009; ACP 2012.

Greenhouse gases: CO₂ with IASI

Mid-tropospheric CO₂ from IASI/Metop-A Monthly evolution over July 2007-December 2014

Seasonal maps of mid-tropospheric IASI CH₄ Average over July 2007-June 2015

Near-real time (D+1) delivery to Copernicus Atmospheric Service

CH₄ flying carpet

Time series of zonally averaged ${\rm CH}_4$ concentrations

Long-term variations of CH₄

Latitude band	Averaged growth ra	increase of CH ₄ (ppbv)	
	IASI	surface stations	(Jul 2007-Dec 2014)
[60N:30N]	4.54 +/- 7.15	4.90 +/- 3.96	~ 33
[30N:Eq]	5.49 +/- 8.46	6.52 +/ 2.90	~ 41
[30S:Eq]	5.31 +/- 5.92	5.53 +/ 4.25	~ 39
[60S:30S]	3.12 +/- 2.42	5.37+/- 2.28	~ 23 10

IASI-NG on MetOp-SG

IASI-NG on METOP SG -

The IASI-NG mission

2006	2012	2018	2021	2028	2035	
IASI-A	IASI-B	IASI-C	IASI-NG-A	IASI-NG-B	IASI-NG-C	

•Objectives of the mission:

•To assure the continuity of IASI for NWP, atmospheric chemistry and climate applications.

•To improve the characterization of the lower part of the troposphere, the UT/LS region and, more generally, of the full atmospheric column.

•To improve the precision of the retrievals and to allow the detection of new species.

Improvement of spectral resolution and radiometric noise.

•IASI-NG Characteristics:

- -spectral coverage: 645 2760 cm⁻¹ (similar to IASI).
- -spectral resolution: 0.25 cm⁻¹ after apodisation (0.50 cm⁻¹ for IASI)
- -spectral sampling: 0.125 cm⁻¹ (0.25 cm⁻¹ for IASI).

-reduction of the radiometric noise by at least a factor of ~2 as compared to IASI.

-spatial sampling: 12km FOV.

IASI-NG: Mid-tropospheric columns of CO₂ and CH₄

SING

Carbon dioxide

Spectral bands for IASI-NG	Improvement of the CO ₂ precision
15 µm	30 %
4.3 μm	0 %
15 + 4.3 μm	45 %

IASI-NG will enable the use of 4.3 μ m channels, giving access to a lower part of the atmosphere, with a much improved precision.

Methane

Spectral bands for IASI-NG	Improvement of the CO ₂ precision
7.7 μm	44 %

Less interference with water vapor lines.

•Strong and needed complementarity with SWIR obs. (UVNS/Sentinel5).

MICROCARB: CO₂

(Artist view based on CNES Myriade enhanced plat form)

- Passive SWIR (Short Wave Infra Red) spectrometer
- Mass < 200 kg
- High rate telemetry: 156 Mbits/s
- On board Data storage: 800 Gbits
- Agility
- Hydrazine propulsion
- Steerable solar generator

MICROCARB : Operating modes

• Scan capacity

- ✓ Mechanism integrated in the instrument (rotating mirror. One axis)
- ✓ Across the track: ± 200 km
- ✓ Permits to acquire non correlated data
- ✓ Sampling distance: 100 km ALT and ACT

MICROCARB: Spectral bands

Spectrometer

Spectral performances	B1	B1' (=B5)	B2	B3
Range (nm)	758-769	1264-1282	1596-1619	2023-2051
Detection	O2. Surface pressure + properties of aerosol	Idem B1. Aerosols properties at λ close to B2-B3	CO ₂	CO ₂

Cloud imager

- Cloud detection
- 🗸 0,625 µm
- ✓ Ground sampling distance: 100 m

MICROCARB: scanning modes

Standard Sounding geometry

Ground footprint: 13 km (ACT) x 9 km (ALT) Data combined on ground => 3 simultaneous samples with size 4,5 km x 9km

Improved resolution or « City « mode (exploratory)

Goal: experiment capacity to characterize local emissions + Support for vicarious validation locally improvement of the spatial resolution

Obtained by slowing down the satellite scrolling + scan + binning tuning

Typical footprint: 2x2 km

Typical area surface: 40 x 40 km²

Normal mode

⁶ macropixels 2x2 km

Sat. chimie/climat & contexte EU

Copernicus services :

Intégration des différentes composantes : Mesures sol, + Satellites, + modèles

Composante satellite Atmosphère S4 et S5 Climat S6-S7

http://www.esa.int/spaceinimages/Images/2014/02/The_Sentinel_family

Sat. chimie/climat & contexte EU

About homepage

Who we are

What we do

About Forecasts Computing Research Learning Log In Search site

site Go

CAMS

Copernicus Atmosphere Monitoring Service As part of the delegation agreement with the European Union, ECMWF is managing the Copernicus Atmosphere Monitoring Service.

Why do we need to monitor the atmosphere?

Some of today's most important environmental concerns relate to the composition of the atmosphere. The increasing concentration of the greenhouse gases and the cooling effect of aerosol are prominent drivers of a changing climate, but the extent of their impact is often still uncertain.

At the Earth's surface, aerosols, ozone and other reactive gases such as nitrogen dioxide determine

About Forecasts Computing Research Learning Log In Search site

C3S

About homepage

- -

Who we are

What we do

Numerical weather forecasts

- Severe weather prediction
- Air quality analysis

Climate monitoring

Supercomputer centre

Copernicus

Copernicus Climate Change Service

Copernicus Atmosphere Monitoring Service

Copernicus Climate Change Service

As part of the delegation agreement with the European Union, ECMWF is managing the Copernicus Climate Change Service.

Why do we need climate information?

This Service, which cuts across all other Copernicus Services, will deliver substantial economic value to Europe by:

- informing policy development to protect citizens from climate-related hazards such as high-impact weather events;
- improving planning of mitigation and adaptation practices for key human and societal activities;
- promoting the development of new services for the benefit of society.

How will the information be produced?

The Climate Change Service will combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of

Numerical weather forecasts

Severe weather prediction

Air quality analysis

Climate monitoring

Euporcomputor contro