

Committee on Earth Observation Satellites

Calibration of GHG Sensors

Report to CEOS AC-VC

June 28, 2017

David Crisp (Jet Propulsion Laboratory, California Institute of Technology)

Pre-Flight Instrument Characterization and Calibration

- Pre-flight testing quantifies key Instrume knowledge parameters
 - Geometric
 - Field of view, Bore-sight alignmon
 - Radiometric
 - Zero-level offset (bias)
 - Gain, Gain non-linearity
 - Spectroscopic
 - Spectral range, resolution, san
 - Instrument Line Shape (ILS)
 - Polarization
 - Instrument stability

CE

Optical Ground Support Equipment

OCO-2 employed four types of optical ground support equipment

- Collimator: spatially-defined continuum and laser light sources to
 - Establish the spectrometer focus
 - Define the instrument field of view (including slit alignment, spatial stray light)
 - Define the spectrometer instrument line shape and spectral scattered light
 - Determine the angle of polarization
- Integrating Sphere: spatially uniform continuum light sources to
 - Characterize and calibrate radiometric performance (minimum and maximum measureable signal, radiometric gain and its linearity, signal to noise ratio)
 - Provide a baseline for the pixel-to-pixel variability in gain
- Step-scan FTS: for assessing spectral stray light rejection
- Heliostat: acquire atmospheric spectra using direct sunlight
 - Validate the instrument line shape and dispersion
 - Test instrument linearity and transient response over a range of illumination levels
 - Provide an end-to-end test of instrument calibration & retrieval algorithm performance, through comparisons with TCCON XCO2 retrievals

Calibration Deck

CESS Geom

Geometric: Slit Alignment

Requirement	Value	Measured	Notes
Slit Width	< 2 mrad	~0.5 mrad (typical) 0.7 mrad (worst case)	~3x Margin
Slit Misalignment	< 0.26 mrad	~0.1 mrad (typical) 0.15 mrad (worst case)	~70% Margin

Test: 0260, Slit image (rows not measured="yellow")

Impacts of slit misalignment and scene non-uniformity mitigated by defocusing the entrance telescope.

Radiometric: Dynamic Range

2.0×10²¹

2.5×10²¹

3.0×10²¹

Requirement	Value	Measured	Notes
Max Measureable Signal – A-band	≥ 1.4 x 10 ²¹ *	~1.8 x 10 ²¹ *	 ~30% Margin
Max Measureable Signal – Weak CO ₂	≥ 4.9 x 10 ²⁰ *	> 8.7 x 10 ²¹ *	Very large marginsSphere isn't bright
Max Measureable Signal – Strong CO ₂	≥ 2.5 x 10 ²⁰ *	> 3.8 x 10 ²¹ *	enough to saturate the detectors in CO ₂ channels

* OCO Radiance Units are: photons/m²/sr/µm/s

Radiometric: Signal-to-Noise Ratio at Nominal Signal

Spectroscopic: Spectral Range

Requirement	Value	Measured	Notes
Spectral Range – A-band	758 to 772 nm	757.6 – 772.6 nm	
Spectral Range – Weak CO ₂	1,594 – 1,619 nm	1,590.6 – 1,621.8 nm	Bands are well centered for OCO-2
Spectral Range – Strong CO ₂	2,045 – 2,082 nm	2,043.1 – 2083.3 nm	

Spectroscopic: Spectral Resolution

Requirement	Value	Measured	Notes
Spectral Resolution – A-band	> 17,000	17,500 – 18,500	Possiving newor is slightly low
Spectral Resolution – Weak CO ₂	> 20,000	<mark>19,100</mark> – 20,500	in CO2 channels. L2 Algorithm Team found found no impact
Spectral Resolution – Strong CO ₂	> 20,000	19,700 – 19,900	on OCO-2 Level 1 requirements

Spectroscopic; Instrument Line Shapes

These results provided valuable information about the ILS shape, width (resolving power) and dispersion, but these results were not adequate to meet the OCO-2 requirements

- Tunable diode lasers were used to characterize the width and shape of the ILS across each of the three spectral ranges.
- This method could characterize the ILS shape over a dynamic range of 1000 to 10000.

Pre-flight Heliostat/TCCON Observations

Observations of the sun with the flight instrument taken during TVAC tests provide an end-to-end verification of the instrument performance.

21 April 2012

CO_2 Column Retrievals from the Strong CO_2 (SCO2) Channel at 2.06 μ m

7 of the 8 footprints in the SCO2 channel produce CO_2 column estimates within ±0.25%. ** TCCON does not use this channel to retrieve X_{CO2} . This is a custom retrieval by D. Wunch.

OCO/GOSAT Cross Calibration

OCO-GOSAT Cross-Calibration Experiment – JPL, 14.04.2008

Intercomparison of OCO and GOSAT radiometric standards at JPL in April 2008 and then at Tsukuba in December of 2008

Radiometric Calibration

GOSAT Inner-Illuminated Integrating Spheres (1m (BaSO4) and 50 cm (Gold)

NIST standard lamp + Spectralon Diffuser

Portable standard radiometers 3 spectral bands (GOSAT) 3 detectors (OCC 0.76 micron (B1) 1.6 micron (B2) 2.0 micron (B3)

0.76 micron (AO2)

1.6 micron (WCO2)

2.0 micron (SCO2)

GOSAT ASD (Field Spec)

OCO ASD (Field Spec)

Cross-Calibration Results

- The OCO and GOSAT radiometric standards showed
 - Excellent agreement in linearity over the full range of illumination conditions considered
 - The O2 A-band and 1.61 micron CO2 radiometers showed very good agreement (<1% differences) in radiometric gain
 - The 2-micron radiometers showed larger differences
 - Traced to spatial inhomogeneity within the integrating sphere, due to reduced reflectance of coating
 - Other issues associated with temperature drift in radiometers

Post-Launch Calibration

E

Verifying Radiometric Calibration: The On-board Calibration System

Open for Science observations

Reflective diffuser

Closed for lamp calibration

Telescope baffle assembly, showing lamps for flat fields

The on-board calibration (OBC) system consists of a rotating calibration paddle that carries:

- an aperture cover, with a reflective diffuser illuminated by on-board lamps for monitoring pixel-to-pixel variations
- A transmission diffuser for making observations of the solar disk for monitoring radiometric calibration

O ₂ A-Band		
		State of the local division of the local div
Weak CO ₂		×
Strong CO ₂	*	

Lamp "flat fields" from each channel.

On-orbit Calibration Operations

Routine Calibration (every orbit)

- OCO-2 will look at the sun through a solar diffuser
- Dark calibration with aperture door closed and lamps off

Special Calibration Activities

- Solar Doppler calibration
 - Observe sun through an entire daylight side of an orbit to calibrate ILS
 - once every six months)
- Lunar calibration required for absolute and relative pointing
 - Verifies alignment between instrument bore sight and the star tracker.
 - Used in radiance calibration
 - performed once every lunar month

Calibration Challenges: Cosmic Rays

Cosmic rays a particular problem, especially on orbits that pass throug the

- The largest effects are seen in the O₂ A-band.
- An algorithm to screen the specific colors affected by cosmic rays has been implemented.

OCO-2 A-band spectra from the South Atlantic Anomaly

Bad pixels (left) are shown along with their associated bad samples (right) for the A-Band (top), Weak CO_2 (middle) and Strong CO_2 (bottom) channels

Radiance Discontinuities due to FPA Rotation (Clocking)

- The OCO-2 FPA's are rotated slightly with respect to the slit and grating
- With these FPA Clocking Errors, the FPA rows recording a given spatial footprint varies across the spectral range (columns)
- To record the same spatial footprint across an entire spectrum, the starting pixel of each spatial footprint can be adjusted from one column (wavelength) to another (by one pixel)

A-Band Channel Sensitivity Variations

- The sensitivity of the OCO-2 ABO2 channel has varied over time, while the WCO2 and SCO2 show much less variability
- The ABO2 sensitivity degradation has two components
 - A "fast degradation" reversed by decontamination activities
 - This component has been attributed to temporary degradation of the anti-reflection coating on the A-band focal plane array detector (FPA) due to the accumulation of a thin (< 100 nm) layer of ice on the FPA
 - A monotonic "slow degradation"
 - Lunar and Vicarious Calibration measurements indicate that this change is due to degradation of the solar diffuser rather than a throughput loss in the instrument

OCO-2 O₂ A-band Sensitivity Degradation

Rate of ice accumulation continues to decrease.

Correcting for the impact of ice accumulation on the FPAs

- The "fast degradation is associated with ice accumulation on the A-band (ABO2) focal plane array (FPA), that degrades the performance of the anti-reflection coating
- The ice contamination also introduces a scattered light that introduces a zero level offset (ZLO), which in turn introduces artifacts in the SIF and aerosol retrievals
- Both the reduced signal and the zero level associated with ice accumulation and the ZLO produced by the scattered light are corrected in version 8 L1B radiances

More Insight on the Slow Degradation

The "slow" component of the degradation is *mostly* due to the calibrator, not the instrument.

A reanalysis of the Lunar Calibration Data indicates that about 20% of the slow degradation is in the instrument optics

The Slow Degradation Mechanism

The solar diffuser consists of a pair of plates with a series of pin holes that are offset from each other, with a gold coated internal surface

Hypothesis;

- As solar UV interacts with contaminants on the gold coated inter surface, it causes darkening.
- The most severe darkening is expected in the ABO2 Channel
- The rate of the darkening is uniform, but could not be predicted prior to launch.

Cartoon showing basic principle only

Vicarious Calibration in Railroad Valley

Vicarious Calibration Campaigns in Railroad Valley have continued to play a critical role in GOSAT inflight calibration, and now play a similar role for OCO-2.

- The GOSAT and OCO-2 instruments were extensively characterized and calibrated prior to launch
- As always happens, the instrument you test on the ground is not the one that arrives in space
 - Significant increase in bad pixels in CO₂ bands
 - Sensitivity to non-uniformly illuminated footprints
- Occasionally, you miss things in ground testing
 - Performance reserve is a major contributor to mission success
- Characterizing and correcting for these issues on orbit has been a challenge, but has been enabled by a robust calibration program
- Future missions will face many of these challenges, as well as others associated with:
 - The 2.3 micron channel, which is not shared by OCO-2
 - Those specific to instrument design and vantage point