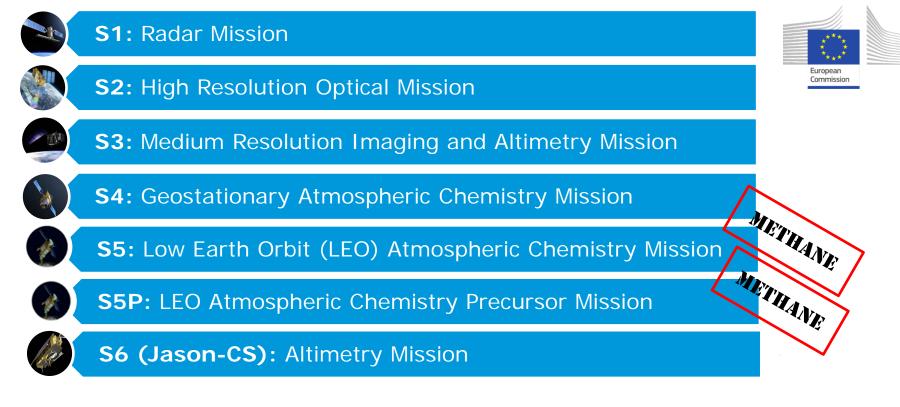


An overview of Copernicus' greenhouse gas satellite missions

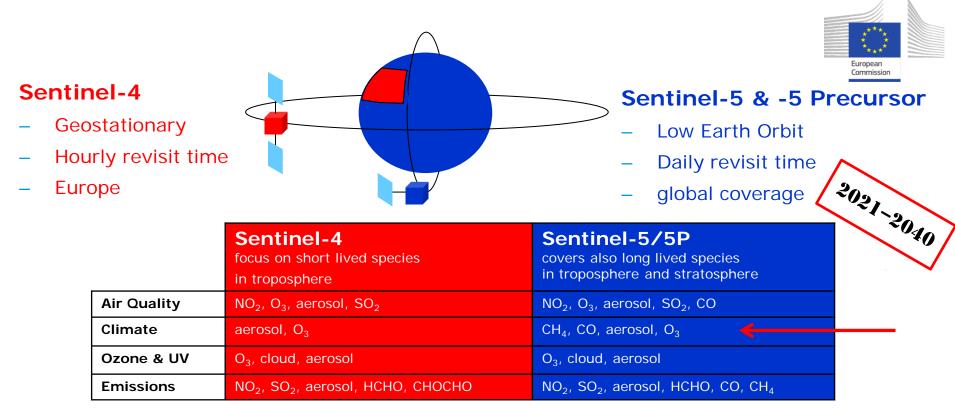
Y.J. Meijer, M.R. Drinkwater ESA, Noordwijk, The Netherlands

B. Pinty, H. Zunker EC, DG-GROW, Brussels, Belgium


Contributions from many experts Major international institutions

ESA UNCLASSIFIED - For Official Use

Copernicus Satellite Missions


ESA UNCLASSIFIED - For Official Use

ESA-EC | 28/06/2017 | Slide 2

opernicus

Sentinel Missions Dedicated to Atmosphere

ESA UNCLASSIFIED - For Official Use

ESA-EC | 28/06/2017 | Slide 3

= 88 ba 22 = + 88 = '= = 18 88 = = 18 a ba 2 = 18 a ba 18 = 18 **18** ba 14

Possible Evolution: Interim Conclusion

Needs to be investigated within Copernicus:

Priority 1:

Greenhouse gas monitoring, specifically anthropogenic CO₂ emissions Priority 2:

Monitoring the Polar regions, specifically the Arctic for sea ice and icebergs

Monitoring Agriculture, specifically on parameters which potentially could be addressed through thermal infrared observations

Priority 3:

Mining, biodiversity, soil moisture and other parameters, requiring observations in additional bands currently not available

ESA UNCLASSIFIED - For Official Use

ESA-EC | 28/06/2017 | Slide 4

CO₂ Monitoring Mission Objectives

The anthropogenic CO₂ monitoring system high-level objectives are

- 1) to detect future new hot spots,
- 2) to monitor and assess hot spots,
- 3) to assess emission changes, as expected from the NDCs
- 4) to assess the emissions trends (change in stocktake with 5 year timesteps).

An integrated system comprising: satellite - in-situ – modelling -emission inventory components, for provision of timely input to policymakers

This leads to the following mission objective of the space component:

The CO₂ mission shall monitor anthropogenic CO₂ emissions using high spatial resolution imaging of total column CO₂

ESA UNCLASSIFIED - For Official Use

CO₂ Monitoring Task Force (CO₂-MTF)

Dedicated Task Force with:

- Sub-task B (lead by EC-GROW & EC-JRC):
 - Group of experts focusing on the end-to-end monitor
 - Output: user requirements and initial high-level sys
- Sub-task A (lead by EC-GROW & ESA):
 - Group of experts focusing on the space component

level-2

• Output: mission requirements document

 \rightarrow

Requirements (RQs) sequence:

User RQs \rightarrow product RQs \rightarrow satellite product RQs \rightarrow observation RQs \rightarrow instrument

 \rightarrow

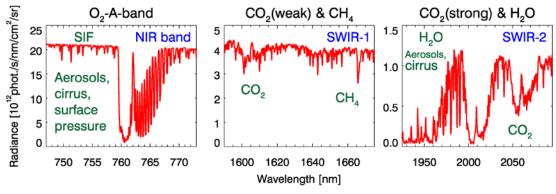
level-1

ESA UNCLASSIFIED - For Official Use

 \rightarrow level-4

Policy

level-0


 \rightarrow

Consolidating Requirements

Main open points:

- Complementary NO₂ and/or CO observations for attribution of anthropogenic emission sources \rightarrow Y/N?
- Complementary aerosol/cloud observations for light path correction \rightarrow Y/N?
- Temporal/spatial coverage \rightarrow how many satellites?
- Required precision \rightarrow SNR and spectral sizing?

ESA UNCLASSIFIED - For Official Use

ESA-EC | 28/06/2017 | Slide 7

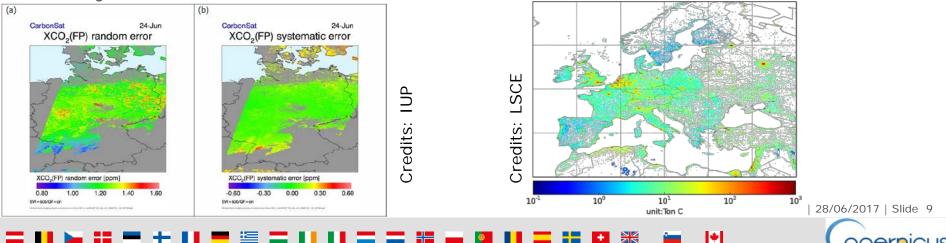
ESA-initiated Support Studies

Support studies to consolidate the Mission Requirements Document (MRD)

Study	Sys.	Prod.	Obs.	Ins.	Start	End	Prime
Study on CCFFDAS	XX	Х			Q3 2017	Q1 2019	Inversion lab
Study on PMIF	Х	XX			Q2 2017	Q4 2018	LSCE
Study on NO ₂ -CO	Х	XX	XX		Q1 2017	Q2 2018	EMPA
Study on aerosol		XX	XX		Q2 2017	Q4 2018	SRON
Study on spectral sizing			XX	Х	Q3 2016	Q2 2018	SRON
Study on E2ES			Х	XX	Q4 2016	Q2 2018	IUP Bremen
Sys. & ins. pre-dev			Х	XX	Q1 2016	Q3 2017	Various
ACADIA – airborne sys.		Х	Х	XX	Q3 2017	TBD	ОНВ

ESA UNCLASSIFIED - For Official Use

ESA-EC | 28/06/2017 | Slide 8

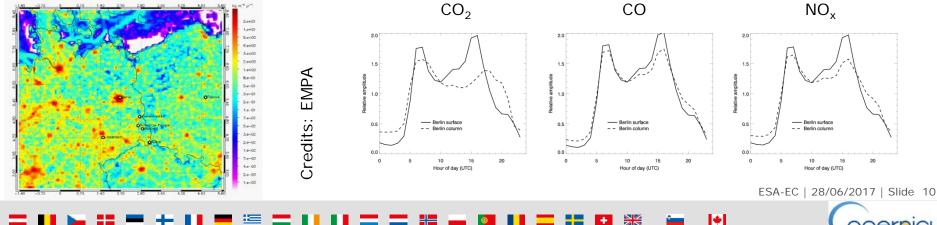

European

Study Example: PMIF

Poor Man's Inversion Framework (PMIF)

Key output: XCO₂ precision & temporal (L2) requirements for MRD

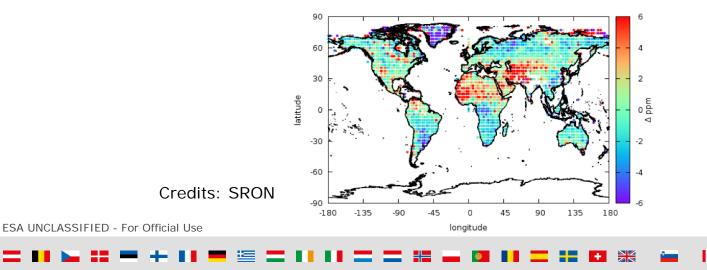
Method: assess detection thresholds and fraction within each country of fossil fuel CO_2 emissions, from power plants and cities, that would be detected by the space borne system


Study Example: SMARTCARB

Satellite Measurements of Auxiliary Reactive Trace gases for fossil fuel CARBon dioxide emission estimation (**SMARTCARB**)

Key output: possibly NO₂ and/or CO (L2) requirements for MRD

Method: exploit COSMO model with GPU implementation for GHG simulations to assess the added value of NO2 and CO observations to estimate and attribute anthropogenic CO_2 emissions.


Study Example: AEROCARB

Study on use of aerosol information for estimating fossil fuel CO₂ emissions

Key output: possibly aerosol observational requirements for MRD

Method: WRF-CHEM model for aerosol and CO_2 simulations, and sub-sequent CO_2 flux inversion

Concept B1, g=300, JUL, aerosol induced error minus global annual mean = 1.3 ppm

European Commission

CO₂ Monitoring – Observation Requirements

Primary Requirements (preliminary):

- XCO_2 precision: 0.5 0.7 ppm
- Systematic bias < 0.5ppm
- Spatial resolution ~4 km²
- Continuously sampled swath with minimum swath width of 200km
- Revisit of ~3 days (poleward of 40 deg), over land & ocean (by a constellation of N satellites)
- Orbit equator crossing time 11:00 12:00hrs → to detect city emission peak, and to maximise coverage at high latitudes in all seasons

Band	Spectral range [nm]	Spectral resolution [nm]	SNR at reference radiance	
NIR	747–773	0.1	400 - 600	
SWIR-1	1590–1675	0.3	300 - 500	
SWIR-2	1925–2095	0.55	200 - 400	

- Possibly additional observations of NO₂ (and/or CO) for separation of anthropogenic from biogenic fluxes
- Possibly specific aerosol/cloud observation capability (multi-angle polarimeter) for reducing scattering induced errors

ESA UNCLASSIFIED - For Official Use

* Relative radiometric accuracy < 0.5%

ESA-EC | 28/06/2017 | Slide 12

Next steps – High level roadmap

Draft MRD in Q3-2017 Task B Report 1 Consolidated v1 MRD Q4-2017 Start system studies Q1-2018 Feedback from studies Task B Reports Consolidated v2 MRD 02-2019 C-MIN 2019 Start implementation Q1-2020 First mission(s) in orbit by 2025 \geq NDC NDC 2021 2025/2026 2015 2019 2023 2028 2017 $S-5P \rightarrow$ $S-7A \rightarrow$ S-5B → **S-5A** S-7N →

ESA UNCLASSIFIED - For Official Use

ESA-EC | 28/06/2017 | Slide 13

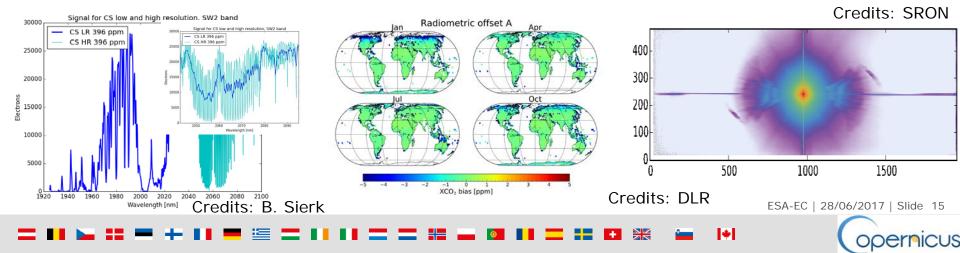
opernicus

European Commissior

BACKUP SLIDES

ESA UNCLASSIFIED - For Official Use

ESA-EC | 28/06/2017 | Slide 14


(opernicus

ESA study: Spectral Sizing Study

Study on assessing relative product accuracies for different spectral sizing

Key output: observational requirements (spectral sizing) for MRD

Method: use ensemble approach to assess the expected relative CO₂ product accuracies for different instrument spectral sizing points (spectral bandwidth, spectral resolution and SNR) assuming realistic retrieval and instrumental errors

European Commissior