

National Institute of Environmental Research

KORUS-AQ campaign results as a validation

Presenter: Ara Cho (NIER)

NIER, NASA, GEMS Algorithm science team, KARI

CONTENTS

National Institute of Environmental Research

- Introduction
- Surface Remote Sensing observation
- Evaluation of GEMS with KORUS-AQ
- Development of Geo-TASO Algorithm

National Institute of Environmental Research

INTRODUCTION

Introduction

National Institute of Environmental Researc

Korea is located in a region of **rapid change** with **strong air quality gradients** both in time and space.

→ Started surface observation and forecasting air quality

based on activity data (Ohara et al., 2007)

Introduction

National Institute of Environmental Resear

There are **temporal** and **spatial limitations** of the data to investigate climate change and air pollution (surface monitoring, LEO, ...)

→ Geostationary Environmental Monitoring Spectrometer(GEMS) will be launched in 2019.

Goal of KORUS-AQ campaign

KORUS-AQ (Korean and U.S.) to implement an **integrated observing system** for improving understanding of Air Quality

Airborne sampling

- connecting ground-based and satellite observations
- Short term

Satellites

- broad coverage, continuity
- it needs reliable information on n ear-surface exposure.

- KORUS-AQ Goals
- Improve capability for satellite remote sensing of air quality
- Better understanding of the factors controlling air quality
- Test and improve model simulation of air quality

Ground monitoring

- The primary method for monitoring exposure.
- limited coverage.

Modeling

- Air quality forecasting and warning service
- it needs reliable information such as emission inventory

[Courtesy of James Crawford and Joon-young Ahn]

Observation platform

Korean and US Air Quality Model Forecasts

Observation platform

National Insti Environmenta

Surface remote sensing observation

• AERONET

: Aerosol optical properties (AOD, SSA, FMF, AE, refractive index, etc.)

• Pandora

: Total column trace gases (O3 and NO2)

38 AERONET and SONET sites within GOCI domain http://aeronet.gsfc.nasa.gov/new_web/DRAGON-KORUS-AQ_2016.html

Korea AERONET & Pandora sites

Geostationary satellites aerosol observation

[Courtesy, Jhoon Kim]

National Institute of Environmental Research

SURFACE REMOTE SENSING IN KORUS-AQ

National Institute of Environmental Researc

Time series of AOD and AE during KORUS-AQ

• AERONET AOD at Seoul (megacity region) and Gosan (coastal region) have lower values compare to other recent years (2011 to 2015).

AOD (550 nm)

• AERONET AOD in the latter part of the campaign shows higher values than in the former part and fine particles are usually observed over the Korea peninsula during KORUS-AQ campaign.

[Courtesy, Jhoon Kim]

Time series of AE and SSA during KORUS-AQ

AE (440-870nm)

SSA (440nm)

High AOD over Western part of Korea

[Courtesy, Jhoon Kim] Similar accuracy with LEO

[Courtesy, Jhoon Kim]

Pandora Ozone and NO2 measurements have low and high variability, respectively \rightarrow Olympic Park at urban area

National Institute of Environmental Research

Validation of Pandora O₃, NO₂ using OMI

[Courtesy, Jhoon Kim]

- Temporal collocation: Averaging Pandora NO2 within ±30 minute from OMI overpass time
- Spatial collocation: Selecting OMI pixels within 30 km from each Pandora site

- For O₃, which has smaller spatial and temporal variability than NO₂, it was found that Pandora total VCD has high correlation with OMI (R>0.9).
- Pandora NO₂ has lower correlation with OMI data than O₃ because OMI has coarse spatial resolution and restricted observation time to measure NO₂ which has large spatial and temporal variability.

National Institute of Environmental Research

16

Evaluation of GEMS Algorithm

with KORUS-AQ

Method

> Airborne profile data collection and analysis

- Airborne and CMAQ profiles during KORUS-AQ -> Airborne data is more detail!

- Retrieval Column data using interpolation and integration

Evaluation result

NO2 Algorithm Evaluation

- 1. Comparison with OMI satellite
 - · OMI Level 2 NO₂
 - · 2005. 03
 - · Lat: -5°~ 45°, Lon: 75°~145°

Evaluation result

National Institute of Environmental Research

20

DEVELOPMENT OF GEO-TASO ALGORITHM

Introduction of Geo-TASO

Geo-TASO (Geostationary Trace gas and Aerosol Sensor Optimization)

- Payload for aircraft to test algorithms performance of GEMS
- Retrieval of trace gas from Earth radiation intensity with UV-Vis hyper-spectrometer

System Parameter	Value	
Dispersion	UV: 0.14 nm/pix; Vis: 0.28 nm/pix	
Spectral Passband	UV: 280-490 nm; Vis: 560-980 nm	
Spectral Sampling	2 - 3.5 samples/FWHM	
Spatial images/sampling (at 32 kft AGL)	40 by 80m IFOVs; 8 by 50m sampling	< Leitch et al. >
Cross-track swath (at 32 kft AGL)	8 km	21

Introduction of Geo-TASO

To improve GEMS Level2 Algorithms, GeoTASO and Sunphotometer are utilized as a test-bed

- * GeoTASO : the Airborne payload in KORUS-AQ campaign,
- * Sunphotometer : an aerosol ground observation
- Special feature of GeoTASO
- Higher spatial resolution
- Observations are not guaranteed to see temporal change at specific points.
- \rightarrow Development of airborne algorithm is needed.

Wavelength Cal/Val Algorithm

- Develop wavelength cal/val algorithm for Geo-TASO with addition of Ozone and ring effect
 - Sensitivity to UV area and cloud is reduced compared with previous algorithm

24

National Institute of Environmental Researc

NO2 Algorithm

QDOAS spectral fitting software (developed at the Royal Belgian institute for Space Aeronomy (BIRA-IASB)). Fitting window: 432 ~ 450 nm Cross section: NO₂_294K (Vandaele et al., 1998) , ozone_273K (Bogumil et al., 2000), ring (Chance and Spurr 1997) 25

[Courtesy, Hyunkee Hong]

NO₂ AMF calculation

[Courtesy, Hyunkee Hong]

1.500

National Institute of Environmental Research

Tropospheric NO₃ VCD retrieval

[Courtesy, Hyunkee Hong]

Summary

- National Institute of Environmental Research
- During KORUS-AQ, it is used for observation such as ground-based remote sensing, airborne, satellite, and modeling.
- The result of surface remote sensing is matched well with last 5 years.
- In GEMS evaluation, the results of Ozone compared with DC-8 or OMI were significant, but we found that formaldehyde requires AMF improvement.
- To understand GEO-TASO observation result, we develop GEO-TASO algorithm and it is undergoing improvement.
- We will evaluate GEMS algorithm more with KORUS-AQ results so that GEMS will offer products with significant quality.

National Institute of Environmental Research

29

THANK YOU FOR YOUR ATTENTION!

Retrieval Algorithm

National Institute of Environmental Research

Retrieval Algorithm

The AMF is defined as the ratio of the measured slant column to th e vertical column in the atmosph ere:

$$AMF = \frac{SCD(\lambda, \Theta, ...)}{VCD}$$
 From Satellite

The *AMF*_i are also often called "Scat tering Weights"

The AMF expresses the sensitivity of the measurement, and depends on a variety of parameters such as:

- wavelength
- geometry
- vertical distribution of the species
- clouds
- aerosol loading
- surface albedo

→ Calculate AMF with RTM

Credit: **aeronomie**, **be**