
Geophysical Validation Needs of the Geostationary Air Quality (GeoAQ) Constellation GEMS + Sentinel-4 + TEMPO

Ben Veihelmann, ESA/ESTEC, AC-VC co-chair

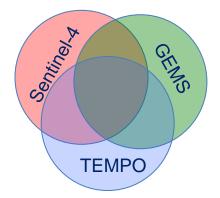
CEOS AC-VC Meeting #13, June 2017, CNES-HQ, Paris, France

GeoAQ = GEMS + Sentinel-4 + TEMPO + LEO

Position paper "A Geostationary Satellite Constellation for Observing Global Air Quality" www.ceos.org

	USA TEMPO	Europe Sentinel-4	Korea GEMS	LEO (eg Sentinel-5P)
Orbit	Geostationary	Geostationary	Geostationary	LEO
Domain	North America	Europe and surrounding	Asia-Pacific	Global
Revisit [h]	1 hour	1 hour	1 hour	Daily, more @ higher lat
Spectral ranges	UV-Vis	UV-Vis-NIR	UV-Vis	UV-Vis-NIR-SWIR
Key products	O ₃ , NO ₂ , SO ₂ , HCHO, CHOCHO, aerosol	O ₃ , NO ₂ , SO ₂ , HCHO, CHOCHO, aerosol	O ₃ , NO ₂ , SO ₂ , HCHO, CHOCHO, aerosol	O ₃ , NO ₂ , SO ₂ , HCHO, CHOCHO, aerosol, CH ₄ , CO,
Spatial resolution [km ²]	9 x 5 at 35°N	8 x 8 at 40°N	8 x 7 (gas), 8 x 3.5 (aerosol) at 38°N	7 x 7 at nadir

- New Validation Challenges
- Constellation Products
- Inter-mission Bias Targets
- Specific Validation Needs



New Challenges

- Temporal sampling of diurnal cycle
- Horizontal resolution (S5P forerunner)
- Inter-mission consistency without geographic overlap
- Slant viewing and illumination angles
- Directionality of surface and atmosphere
- Geo-location knowledge
- Vertical distribution of constituents
- Near surface ozone (TEMPO)
- Stratospheric NO₂ correction (S4 lack of clean sector)
- High expectations wrt data quality and availability (→ FRM, QA4EO)

GeoAQ Constellation Products

Product / Parameter	Common to the 3 GEOs	Comment	
Solar irradiance			
Earth radiance	305 to 490 nm		
Reflectance			
Ozone profile	stratosphere, troposphere, free troposphere, possibly 0-6 km	Differences in averaging kernels	
Ozone total column			
NO ₂ total column		Consider applying same algorithm to all missions	
SO ₂ total column	Slant and vertical columns		
HCHO total column			
СНОСНО			
NO ₂ tropospheric col.	tropospheric sub-column	Differences in separation of troposphere/stratosphere	
Aerosol	AOD, UV absorbing index	S4 joint retrieval with surface	

Inter-mission Bias Targets

- Product performance
- Accuracy of verification method
- Consistency of heritage data sets
- Proposed bias targets
 - ➔ Your feedback

Inter-mission Bias Targets

CE

Product		Uncertainty*		Accuracy* of	Consistency*	Proposed bias	
		GEMS	S4	Tempo	method	heritage data	target*
Solar i	rrad		2-3%		2-4% consistency of ref spectra, direct comparison	2-5%	2%
Earth r	ad		2-3%		2% acc GSICS inter-cal factors	2-5%	3%
Reflec	t.		2-3%		2%	2-5%	3%
	total	3%	3%	3%	1-3%	<1% monthly zonal mean	1%
O ₃	strat	5%	-	5%			5%
	trop	20%	25%	10 ppbv	🚽 Your	feedback	20%
	0-2km	-	-	10 ppbv			
NO ₂	total	1x10 ¹⁵	-	1×10 ¹⁵			1×10 ¹⁵
	trop	-	30%, 1.5×10 ¹⁵	1×10 ¹⁵		1-2×10 ¹⁵ (OMI-SCIA), bias in strat 0.5×10 ¹⁵	1×10 ¹⁵
SO ₂		1x10 ¹⁶	60%, 3×10 ¹⁶	1×10 ¹⁶			1×10 ¹⁶
нсно		1x10 ¹⁶	50%, 1.5×10 ¹⁶	1×10 ¹⁶			1×10 ¹⁶
СНОС	НО		50%, 7×10 ¹⁴	4×10 ¹⁴			4×10 ¹⁴
AOD		20%, 0.1	-	0.05			0.05

*) in molec/cm² unless specified otherwise

Validation Goals in Phases E1/E2

	Commissioning Phase (E1)	Exploitation Phase (E2)	
Level-1b	 In-flight Cal Key Data System verification and acceptance 	Maintain data qualityDegradation monitoring	
	 Establish data quality 	Anomaly detectionInter-mission consistency	
Level-2	 Processor verification and acceptance First check data quality 	 Establish data quality Maintain data quality Degradation monitoring Anomaly detection Inter-mission consistency 	

Validation Needs

- Establish and maintain Data Quality
- Validate Diurnal Cycle Observation Capability
- Validate Stratospheric Correction
- Validate Source Estimation
- Verify Inter-Mission Consistency
- Document should
 - Identify type of correlative data
 - Identify activities and approaches
 - ➔ Your feedback

Validation Needs for NO₂

Establish and maintain data quality

Systematic validation by operational data quality center

- Domain
 - All conditions, full geographic coverage area, all seasons
- Fiducial Reference Measurements
 - Co-located NO₂ measurements
 - **o** total column (ground based, inter-calibrated network)
 - profile in lower troposphere (ground based, inter-calibrated instrumentation)
 - Cloud fraction, optical depth, height (ground based and met imagers)
 - Aerosol optical depth, type (ground based, inter-calibrated network)
- Other data
 - Surface albedo (climatology, near-real time satellite product)
 - CTM data (NO₂ field)
 - Stratospheric NO₂! From model, OMPS limb, ..?

Validation Needs for NO₂

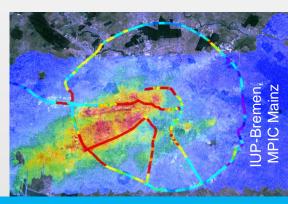
Validate Diurnal Cycle Observation Capability Campaign capturing the relevant variations

- Domain
 - Polluted area including sources, limited transport into domain
 - Diurnal evolution of NO2 (sources, processes, transport, sinks)
- Correlative measurements
 - NO₂ with hourly sampling or better
 - total column: high spatial resolution (~1km), various viewing geometries
 - total column: at selected locations
 - profile: lower troposphere, also stratosphere, at selected locations
 - Cloud fraction, optical depth, height
 - Aerosol optical depth, type
 - Surface reflectance directionality (BRF)
- Auxiliary data
 - CTM data (NO₂ sources, sinks, profiles, related species, ...)
 - Emission strength (NO/NO₂) diurnal variation

Validation Needs for NO₂

Validate Stratospheric Correction Dedicated analysis

- Approaches
 - use of model forecast
 - spatial filtering & interpolation
 - clean sector (not available for S4)
- Domain
 - latitude bands covered by the mission
 - various local times
- Correlative data
 - Stratospheric NO₂! From model, OMPS limb, ..?
 - NO₂ total column


Validation Needs for NO₂

Validate Source Estimation

Campaign dedicated to higher level product

- Domain
 - Similar as for diurnal cycle
 - Polluted area including sources, clean surrounding
- Correlative Measurements
 - NO₂ column and profile reference measurements in domain
 - Near-simultaneous NO₂ profile on domain boundary
 - Cloud fraction, optical depth, height
 - Aerosol optical depth, type
- Compare
 - Inverse modelling of satellite NO₂ data
 - Inverse modelling of correlative NO₂ data
 - Simplistic estimate using divergence theorem
 - Emission estimates

Source $dA = \oint \overrightarrow{Flux} \cdot \overrightarrow{n} \, ds$

CESS

Validation Needs for NO₂

Verify Inter-Mission Consistency

Various approaches

- LEO missions used as travelling standard
 - Systematic assessment as part of operational QA
 - Dedicated assessment of sub-sets (e.g. best understood, polluted/background, ...)
- Stationary inter-calibrated instrumentation
 - Systematic assessment as part of long-term QA
 - Dedicated assessments, e.g. best understood sub-set
- Travelling ground-based and airborne instrumentation
 - Link campaigns
 - Inter-compare instrumentation and algorithms
- Direct comparison of similar targets?
- Comparisons with CTM

Thank you

Validation Needs for Irradiance

Establish and maintain Data Quality

Systematic validation by operational data quality center

- Comparisons
 - measured reference spectra (ground-based, atmosph. corrected)
 - simulated reference spectra (line lists, models)
 - measured spectra from LEO mission
 - measured spectra from GeoAQ missions
- Monitoring of trends and dependencies
- Global Space-Based Inter-Calibration System (GSICS): verify inter-mission consistency, determine inter-calibration factors

Validation Needs for Radiance and Reflectance

Establish and maintain Data Quality

Systematic validation by operational data quality center

- Comparison with expected signal for known targets
 - bright clouds, dark ocean
 - vicarious calibration targets
 - dark space, moon (S4)
- Monitoring of trends and dependencies
- Inter-comparisons with LEOs used as travelling standard
 - geometry matching
 - bridge goniometry by modelling
- Global Space-Based Inter-Calibration System (GSICS): verify inter-mission consistency, determine inter-calibration factors