GEO-based Aerosol Sensing: Combining TEMPO and ABI observations

Omar Torres
NASA Goddard Space Flight Center
Atmospheric Chemistry and Dynamics Laboratory

13th CEOS AC VC Meeting
CNES, Paris, June 28-30, 2017
Satellite Aerosol Remote Sensing

In aerosol remote sensing, measured reflectances depend on multiple aerosol properties:

- Particle size: particle size distribution
  Fine and coarse modes, std. dev., coarse mode fraction: at least 5 parameters

- Particle shape: aspect ratio, 1 parameter

- Particle composition: Complex refractive index (wavelength dependent), 2 parameters

- Extinction Optical Depth (wavelength dependent, AE), AOD, 1 parameter

- Aerosol vertical distribution (stronger in the UV)

Other requirements:

- Surface reflectance must be characterized

- Cloud-free conditions

To derive AOD and AE assumptions on the values of the other parameters must be made
Use of near UV Satellite Observations for retrieving aerosol properties

Observations in the 340-400 nm range can be used to derive aerosol properties

Advantages:
- Low surface albedo at all terrestrial surfaces (.01 to .03 for vegetation; .08 - .12 deserts)
- Sensitivity to aerosol absorption.
- Negligible gas absorption interference.

Disadvantages:
- Ocean color interference
- Aerosol absorption detection is aerosol layer height sensitive.

Historically, near UV measurements have been associated with coarse spatial resolution sensors (TOMS, OMI) primarily designed for trace gas retrieval.

At these multi-kilometer resolution sub-pixel cloud contamination (SCC) is the most important error source in aerosol remote sensing.

*Full exploitation of this retrieval technique awaits the development of high spatial resolution UV instruments that can minimize cloud contamination effects.*
**Improvements in spatial resolution of near UV measurements**

<table>
<thead>
<tr>
<th>Agency</th>
<th>Sensor</th>
<th>Satellite</th>
<th>Spectral range of observations (nm)</th>
<th>Resolution</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNMI/NASA/FMI</td>
<td>OMI</td>
<td>Aura</td>
<td>290-500 (Hyp.)</td>
<td>13x24 km</td>
<td>2005-Present</td>
</tr>
<tr>
<td>NOAA-NASA</td>
<td>OMPS</td>
<td>Suomi-NPP</td>
<td>300-380</td>
<td>50 km</td>
<td>2011-Present</td>
</tr>
<tr>
<td>NASA</td>
<td>EPIC</td>
<td>DSCOVR</td>
<td>340, 388</td>
<td>~ 10 km</td>
<td>2015-Present</td>
</tr>
<tr>
<td>EU (Copernicus)</td>
<td>TROPOMI</td>
<td>Sentinel 5 P.</td>
<td>270-500; 675-775 &amp; 2305-2385 (Hyp.)</td>
<td>3.5X7 km</td>
<td>2017 (Sched.)</td>
</tr>
<tr>
<td>KARI</td>
<td>GEMS</td>
<td>GCOMPSAT2</td>
<td>300-500 (Hyp.)</td>
<td>7x7 km</td>
<td>2019 (Sched.)</td>
</tr>
<tr>
<td>JAXA-NIES</td>
<td>CAI-2</td>
<td>GOSAT-2</td>
<td>343, 380</td>
<td>0.5x0.5</td>
<td>?</td>
</tr>
<tr>
<td>NASA-SAIO</td>
<td>TEMPO</td>
<td>TBD (GEO)</td>
<td>290-490 &amp; 540-740 (Hyp.)</td>
<td>4.5x2 km</td>
<td>2020 (Sched.)</td>
</tr>
<tr>
<td>ESA</td>
<td>Sent-4</td>
<td>TBD (GEO)</td>
<td>305-500, 675-775</td>
<td>3.5x7</td>
<td>?</td>
</tr>
<tr>
<td>NASA-JPL</td>
<td>MAIA</td>
<td>TBD (LEO)</td>
<td>360, 380</td>
<td>1.0x1.0km</td>
<td>?</td>
</tr>
</tbody>
</table>

**TEMPO will be, at launch, the highest spatial resolution space borne hyper-spectral sensor ever built**
TEMPO Mission  General Description

• **Measurement technique**
  - Imaging grating spectrometer measuring solar backscattered Earth radiance
  - Spectral band & resolution: 290-490 + 540-740 nm @ 0.6 nm

• **Spatial Coverage**
  - Mexico City/Yucatan, Cuba to the Canadian oil sands, Atlantic to Pacific
  - Radiance maps of Greater North America in every hour

• **Spatial resolution**
  - 2.1 km N/S × 4.7 km E/W native pixel resolution (9.8 km²)

• **Standard data products and sampling rates**
  - Most sampled hourly,
  - Measurement requirements met up to 70° SZA for aerosols and other products

• **Geostationary orbit**
  - NASA is responsible for host selection, launch arrangements and hosting services
  - 80-115° W acceptable latitude
Effects of sub-pixel cloud contamination

- Reduces the availability of scenes for retrieval.
- AOD retrieval contamination in large pixels considered clear

Pixel resolution 30 m, 15% CF

Pixel resolution 960 m, 25% CF

Koren et al., how small is a small cloud?, ACP, 2008

Remer et al., Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution, AMT, 2012
- Input: Radiance measurements at 354 and 388 nm
- Considers three aerosol types: carbonaceous, desert dust and sulfate particles
- Retrieved parameters: AOD, SSA (388 nm) and UVAI.

Ancillary Information:
- Surface albedo (OMI-based climatology)
- Aerosol layer height (CALIOP-based climatology)
- Real time AIRS CO data (smoke/dust differentiation)

- A similar algorithm will be applied to TEMPO observations
- The combined use of TEMPO and GOES 16 (and 17) high spatial resolution Advanced Baseline Imager (ABI) observations can yield a better GEO-based aerosol product.
- Smoke/dust differentiation is an issue for both TEMPO and ABI observations. Looking to other TEMPO products suitable as smoke tracer (formaldehyde?) in conjunction with UVAI.
Advanced Baseline Imager

ABI channels:
- Visible: 0.47, 0.64 μm
- Near IR: 0.86, 1.37, 1.6 μm
- SWIR/Thermal IR: 2.2, 3.9, 6.2, 6.9, 7.3, 8.4, 9.6, 10.3, 11.2, 12.3, 13.3 μm

Spatial Resolution
0.47 μm 1.0 km
0.64 μm 0.5 km
> 2.0 μm 2.0 km

Spatial Coverage

Full Disk: 4 per hour
CONUS: 12 per hour
Mesoscale: 30 or 60 sec

Satellite: GOES-16
Launch date: November 19, 2016

ABI’s much higher spatial resolution measurements allow the application of spatial homogeneity and spectral techniques for cloud masking.
Aerosol Optical Depth at 550nm

2017171 1615

Credit: NOAA/NESDIS/STAR aerosol team
Using TEMPO and ABI observations

1. Use TEMPO near UV algorithm to retrieve AOD and SSA from near UV observations

2. Use an algorithm (DT, MAIAC) on ABI observations to retrieve AOD from VIS-near IR observations

3. Use collocated TEMPO ABI to retrieve AOD and SSA from near UV observations using ABI cloud mask

4. Use collocated TEMPO -ABI observations to retrieve AOD from visible observations and SSA and Absorption Angstrom Exponent (AAE) or aerosol layer height (ZAE) from near UV observations

<table>
<thead>
<tr>
<th>Options</th>
<th>AOD Yield</th>
<th>SCC</th>
<th>Absorption</th>
<th>AAE/ZAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TEMPO</td>
<td>Low</td>
<td>High</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. ABI</td>
<td>High</td>
<td>Low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3. TEMPO+ABI cm</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4. TEMPO+ABI cm + ABI AOD</td>
<td>High</td>
<td>Low</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Combined VIS-UV retrieval of aerosol properties

Independently measured AOD in the visible can be extrapolated to the near UV, and combined with near-UV measured radiances to improve aerosol characterization.

For elevated aerosols, retrieve SSA and ZAE
For BL aerosols, retrieve SSA and AAE (or SSA at two near UV channels)

Sources of Uncertainty of Independently measured AOD

- Sensor Calibration
- Surface Characterization
- Aerosol Model (SSA and PSD)
- Cloud Contamination
- Extrapolation Error

In the following sensitivity analysis combined uncertainties of 10%, 15% and 20% are assumed
Simultaneous retrieval of aerosol layer height and single scattering albedo
Sensitivity of retrieved SSA and ZAE to AOD Accuracy

AOD uncertainties: 10%, 15%, 20%
Application to collocated OMI – Aqua-MODIS observations

Comparison of retrieved aerosol layer height to lidar observations