GRASP aerosol from POLDER, 3MI, etc. polarimeters: towards estimation PM2.5

<u>Oleg Dubovik¹</u>, Anton Lopatin¹, Pavel Litvinov², Yevgeny Derimian¹, Tatyana Lapyonok¹, Anton Lopatin¹, David Fuertes², Fabrice_Ducos¹, Xin Huang¹, Benjamin Torres², Michael Aspsetsberger³ and Christian Federspiel³

- 1 Laboratoire d'Optique Atmosphérique, CNRS Université Lille 1, France;
 - 2 GRASP-SAS, LOA, Université Lille 1, Villeneuve d'Ascq, France
 - 3 Catalysts GmbH, High Performance Computing, Linz, Austria

GRASP: Generalized Retrieval of Aerosol and Surface Properties

Strength of GRASP algorithm concept:

- ✓ Based on accurate rigorous physics and math;
- Versatile (applicable to different sensors and retrieval of different parameters);
- Designed for multi-sensor retrieval (satellite, groundbased, airborne; polar and geostationary,);
- Not-stagnant (different concept can be tested and compared within algorithm);
- ✓ Flexible:
 - generalizable (to IR, hypo spectral, to retrieval of gases and clouds, etc.);
 - or degradable (to less accurate but fast solution, LUT,...);
 - Practical (rather fast and easy to use for given level fundamental complexity);

Current and potential applications:

Satellite instruments:

polar: POLDER/PARASOL, 3MI/MetOp-SG, MERIS/Envisat, Sentinel-3 (OLCI, SLSTR), etc. *geostationary*: Sentinel-4, FCI, GOCO, Himawari-8, etc.

Ground-based, airborne and laboratory instruments:

passive: AERONET radiometers, sun/luna/star-photometers, etc. *active*: multi-wavelength elastic and non-elastic lidars; *airborne and laboratory*: *polar nephelometers*,

Multi-instrument synergy:

<u>ground-based</u>: lidar + radiometers + photometers , sun/luna/star-photometers, etc. <u>satellite</u>: OLCI + SLSTR, polarimeter + lidar (e.g. PARASOL + CALIPSO)

Support: CNES (TOSCA, RD), ANR (CaPPA), ESA (S-4, MERIS/S-3, GPGPU, CCI, CCI-2,CC+); EUMETSAT (3MI NRT), FP6-7 (ACTRIS 1-2), Catalysts GmbH, etc.

<u>Collaborations</u>: NASA/JPL, NASA/GSFC, NASA/GISS, NASA/Langley KNMI, JAXA, Catalysts GmbH (Austria), Chinese Academy of Science and Space Agency, Belarus, Ukraine, etc.

Multi-Source LSM approach:

$$\boldsymbol{P}_{1,2,3} = \boldsymbol{P}_1 \boldsymbol{P}_2 \boldsymbol{P}_{3...} \sim \exp\left(-\frac{1}{2\sigma_1^2} \sum_i \frac{\sigma_1^2}{\sigma_i^2} \left(\Delta \boldsymbol{f}_i^T \Delta \boldsymbol{f}_i\right)\right) = max \quad \longrightarrow \quad \sum_i \frac{\sigma_1^2}{\sigma_i^2} \left(\Delta \boldsymbol{f}_i^T \Delta \boldsymbol{f}_i\right) = min$$

where $\Delta_i = f_i^* - f_i(a)$ and $f_i^* -$ measurements or a priori data P(...) - Probability Density Function (Likelihood)

- Optimum data combination
- Optimum use of a priori information
- Continuous solution space
- Rigorous error estimations
- Large number of retrieved parameters with less assumption

More "sophisticated"

Generally more time consuming

(Jacobean calculations)

Multi- Angular Polarimetric imagery:

What is a real value?

The concept of multi-pixel retrieval

X-Variability Constraints

PARASOL:

- radiances: (443, 490, 560, 670, 870, 1020 nm)
- polarization: (490, 670, and, 870 nm)
- up to 16 viewing directions

AEROSOL:

- size distribution (5 or more bins)
- spectral index of refraction (8 λ)
- sphericity fraction;
- aerosol height

SURFACE:

- BRDF (3 spectrally dependent parameters)
- BPDF (1 or 2 spectrally dependent parameters)

43 = (5 (SD) +12 (ref. ind.) + 1 (nonsp.) + 18 (BRDF) +6 (BPDF) + 1 (height)

144 measurements

3MI / Metop

3MI / Metop

3MI / Metop

Dust detection with GRASP

GRASP/PARASOL AngExp 18/02/2008

60°

50°

70° 80°

- 50°

60°

30°

20°

10°

٥°

-10°

-20°

-30°

40°

80°

2.0

70°

Dust events:

-10°

0.4

٥°

10°

20°

0.8

30°

40°

1.2

50 °

60 °

1.6

-20° -10°

50

40

30°

20°

10°

0°

·10°

·20°

·30°

·40°

-30° -20°

0.0

✓ High AOD
✓ Angstrom Exponent < 0.5
✓ SSA (440 - 1020) > 0.9

Validation vs AERONET 2004 - 2013

PARASOL Validation vs AERONET 2004 - 2013

AOD (565), Autumn (PARASOL archive average) Averaged Autumn data of POLDER AOD 565nm (2005-2013)

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

Amount of aerosol

PM2.5 over Beijing versus AOT 2009–2012

size distribution (spectral AOD)

Correlation of population density and pollution

Fine AOD 565nm 2011 Summer

AOD_{fine}(565)

Fine AOD 565nm 2011 Autumn

dust

Distribution of coarse mode aerosol Asia

Coarse AOD 565nm 2011 Winter

AOD_{coarse}(565)

Coarse AOD 565nm 2011 Spring

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0. 9	1.0

Coarse AOD 565nm 2011 Autumn

Angstrom exponent, Summer (PARASOL archive average)

Averaged Summer data of POLDER Angstrom Exponent 670-865 (2005-2013)

Large particles

Small particles

PARASOL Validation vs AERONET 2004 - 2013

Land + Ocean

Scale height (m), Winter (PARASOL archive average)

Averaged Winter data of POLDER Vertical Profile Height (2005-2013)

CALIPSO climatology

Courtecy of Vassilis Ameridis

Aerosol vertical distributions

Sensitivity test for aerosol vertical information retrieval

1.5

4OT 0.44 7m

0.5

0

2500

Dependence on aerosol type

St. deviation Dependence on **Aerosol AOD**

Aerosol vertical distributions

Sensitivity test for aerosol vertical information retrieval

Dependence on

aerosol type

Mean height Dependence on Aerosol AOD

AC-VC-13, Satellite aerosol for AQ, CNES, Paris, France, 29 June, 2017

Conclusion of sensitivity tests:

- ✓ PARASOL data have solid sensitivity to aerosol height;
- Sensitivity is higher to fine mode aerosol and less to large non-spherical dust;
- ✓ There is dependence on assumption about atmospheric aerosol vertical profile.

Particulate matter for 2.5 mum

Importance of knowledge of height

Sensitivity to particle drying

Fixed particle density, wet

Varied particle density, wet

Real Part of Ref. Index (565), Summer (PARASOL archive average)

Averaged Summer data of POLDER Ref. Index Real Part 565nm (2005-2013)

PARASOL/GRASP PM2.5 over Beijing 2009–2012

AOT>0.3, residual<3%

PM2.5 climatology

WHO Global Urban Ambient Air Pollution Database

PARASOL/GRASP 2008

WHO Global Urban Ambient Air Pollution Database

PARASOL/GRASP 2008

WHO Global Urban Ambient Air Pollution Database 2016

PARASOL/GRASP 2008

WHO Global Urban Ambient Air Pollution Database 2016

PARASOL/GRASP 2008

October 2008

Advancement of POLarimetric Observations Calibration and improved aerosol retrieval

October 24-27, 2017 Hefei · China

Welcome Letter

- Important Dates
- Organizing Committee
- Agenda
- Invited Speakers
- Registration
- Abstract Submission
- Venue
- Booking Hotel
- Sponsorship
- Tours Information
- Useful Information
- Contact Us

Welcome Letter

Dear colleagues,

We are glad to announce that the 1st International Workshop on "Advancement of polarimetric observations: calibration and improved aerosol retrievals" (APOLO2017) will be held in Hefei, China from October 24 to 27, 2017. This is the first workshop of a series of polarimetry workshops (http://www-loa.univ-lille1.fr/workshops/APOLO-2017).

Several polarimetric missions are scheduled for launch in the coming years by international and national space agencies. Satellite polarimetry is one of the most promising and, at the same time, largely underexploited fields of aerosol remote sensing. This is the 1st meeting of the planned series of workshops on satellite polarimetry. These scientific workshops aim to promote international collaboration as well as in-depth exchange of ideas and experiences on diverse aspects of polarimetric remote sensing, in particular: advances in the theory of polarimetric remote sensing, optimisation of strategies of polarimetric Earth observations, improvement of polarimetric observation quality and information content, advancement of retrieval algorithms and data processing, and long-term Cal/Val.

Multi-term LSM Multi-Pixel Solution:

GRASP over land and ocean

Biomass burning

Ocean/ land discontinuity as averaging artifact

Gaps in spatial coverage (due to cloud mask or PARASOL swath) can be source of ocean/land discontinuity.

First parameter (670 nm) of Ross-Li BRDF, 2008

PARASOL water living radiance

December 2008,

Validation against AERONET for high AOD biomass cases

Validation vs AERONET 2004 - 2013

Validation vs AERONET 2004 - 2013

PARASOL Validation vs AERONET 2004 - 2013

AOD (565), Autumn (PARASOL archive average) Averaged Autumn data of POLDER Log AOD 565 (2005-2013)

Amount of aerosol

PARASOL:

- radiances: (443, 490, 560, 670, 870, 1020 nm)
- polarization: (490, 670, and, 870 nm)
- up to 16 viewing directions

AEROSOL:

- size distribution (5 or more bins)
- spectral index of refraction (8 λ)
- sphericity fraction;
- aerosol height

SURFACE:

- BRDF (3 spectrally dependent parameters)
- BPDF (1 or 2 spectrally dependent parameters)

Radius (µm) 10 BRDF Wavelength (µm) 10 BRDF Mareingth (µm) 10 BRDF Mareingth (µm) 10 BRDF Mareingth (µm) 10 BRDF Mareingth (µm) 10 Mare

43 = (5 (SD) +12 (ref. ind.) + 1 (nonsp.) + 18 (BRDF) +6 (BPDF) + 1 (height)

144 measurements

