Committee on Earth Observation Satellites AC-VC-13, June 28th-30th, 2017 Status of **Geostationary Environmental** Monitoring Spectrometer, GEMS Jongmin Yoon¹, Ara Cho¹, Jhoon Kim^{2,3} Xiong Liu³, Kelly Chance³, Jay Al-Saadi⁴, Ben Veihelmann⁵ and GEMS Science Team ¹National Institute of Environmental Research, Korea ²Yonsei University, Korea ³Harvard Smithonian Center for Astrophysics, Cambridge, MA ⁴NASA Langley Research Center, Hampton, VA ⁵ESA, ESTEC, Noordwijk, Netherlands

National Institute of Environmental Researc

GEMS Measurement principle

GEMS Measurement Concept

The GEMS system employs a 1032 x 2048 pixel CCD detector that operates from 300 -500 nm, which at a minimum, enables NO_2 , SO_2 , HCHO, O_3 , and aerosol retrieval. The telescope projects the slit field of view onto the Earth, and the full field of regard is achieved via a 2-axis onboard scan mirror.

y (t)

International collaboration

National Institute of Environmental Research

Constellation of GEO Mission for synergistic products

UV-Vis-NIR

305-500, 750-775 nm

TEMPO (America)

GMES S4 UVN

(Europe)

GEMS + AMI + GOCI2 GEO KOMPSAT (Asia)

Constellation synergy

- Improving spatial and temporal coverage to monitor globalized pollutants & SLCF
- Sharing basic requirements on data products and instrument to maintain data quality
- Consolidating socio-economic benefit analysis
- Supporting QA and CAL/VAL

GEMS Instrument

- Step-and-stare UV-Vis imaging spectrometer scanning at least 8/day in 30 min
- Daily solar and dark calibration
- Images coadded at each position + mirror move back < 30 minutes
- Diffusers for on-orbit solar calibration and onboard LED light source
- Redundant electronics for 10-year lifetime
- ✓ Preflight tests ongoing, to be delivered in September, 2017

Pre-thermal panel

Thermal panel and CMA Installation

GEMS Status

Schedule

- L1-2 Progress Evaluation & Review, June 2017; Grant renewed until 2020
- PSR, August/September, 2017
- Delivery September, 2017
- > AIT, 2017-2019
- > Launch, March 2019

• AIT schedules at KARI

- Bus I&T: ~ November 2017
- Payload I&T : Dec. 2017 Feb. 2018
- Antenna I&T : Mar Apr. 2018
- Thermal Vac test : May Jul 2018
- SA I&T : Jul Aug 2018
- Dynamic Test : Aug Oct 2018
- EMC Test : Nov 2018
- Final Preparation : Dec 2018
- Launch Campaign : Feb Mar 2019

L0-L1b Processor

- Under development by BATC & KARI
- Dark correction

-fitting by temperature changes added

• Smear correction :

-ratio of frame transfer time to integration time, with previous frame effects considered

• Straylight correction :

- matrix, Richardson-Lucy deconvolution,

• Spectral correction :

Reference solar spectrum convolved with GEMS bandpass functions, polynomial equation

• Onboard LED calibration :

- for linearity, gain and PRNU(TBD)

• Polarization correction :

- VLIDORT, Linear polarization sensitivity tests

GEMS ground station

Building to be completed by Dec. 2017

Receiving and processing system to be installed from Mar. 2018

GEMS Products (16)

Product	Importan ce	Min (cm ⁻²)	Max (cm ⁻²)	Nominal (cm ⁻²)	Accuracy	Windo w(nm)	Spat Resol (km ²)@Sel	SZA (deg)	Algorit hm
NO ₂	O3 precursor	3x10 ¹³	1x10 ¹⁷	1x10 ¹⁴	1x10 ¹⁵ cm ⁻²	425-450	7 x 8 x 2 pixels	< 70	
SO ₂	Aerosol precursor Volcano	6x10 ⁸	1x10 ¹⁷	6x10 ¹⁴	1x10 ¹⁶ cm ⁻²	310-330	7 x 8 x 4 pixels x 3 hours	< 50 (60*)	BOAS
нсно	VOC	1x10 ¹⁵	3x10 ¹⁶	3x10 ¹⁵	1x10 ¹⁶ cm ⁻²	327-357	7 x 8 x 4 pixels	< 50 (60*)	DUAS
сносно	proxy				1x10 ¹⁶ cm ⁻²	437-452	7 x 8 x 4 pixels	< 50	
TropLO3 TropUO3 StratO3 TotalO3	Oxidant Pollutant O ₃ layer	4x10 ¹⁷	2x10 ¹⁸	1x10 ¹⁸	3%(TOz) 5%(Stra) 20(Trop)	300-340	7 x 8	< 70	OE TOMS
AOD AI SSA AEH	Air quality Climate	0 (AOD)	5 (AOD)	0.2 (AOD)	20% or 0.1@ 400nm	300-500	<mark>3.5</mark> x 8	< 70	$\begin{array}{c} \text{Multi-} \\ \lambda \\ \text{O}_2 \text{O}_2 \end{array}$
ECF CCP	Retrieval Climate	0 (COD)	50 (COD)	17 (COD)		300-500	7 x 8	< 70	O ₂ O ₂ RRS
Surface Property	Environ- ment	0	1	-		300-500	<mark>3.5</mark> x 8	< 70	Multi- λ
UVI	Public health	0	12	-		300-350	7 x 8	< 70	

Validation tests

- NRT operation tests using OMI I1b data
- Blind test using proxy data from RTM and CTM

Credit :

Mijin Kim (Yonsei U) – Aerosol Y.S. Choi (EWU) - Cloud Jae H. Kim (Busan NU) – O_3 Hanlim Lee (Pukyung NU) - NO_2 Rokjin Park (SNU) – HCHO, CHOCHO Y.J. Kim (GIST) – SO_2 J.M. Yoo(EWU), M.J. Jeong(GWNU) – Sfc provident

Ozone

O3 Profile

Validation with ozonesonde (2004-2008)

O3 (Trop.)	Target	Perform ance
R	0.5-0.8	0.79
Slope	0.5-0.9	0.89
Intercept	0-15 DU	1.91 DU
RMSE	5-10 DU (10-20%)	6.48 DU
Error (%)	3-6 DU (10-20%)	2 DU (7.29%)

Total O3

Validation with Brewer (2005-2006)

500 N(#): 13215 CORR :0.97 R:NSE: 2.35	O3 (Total)	Target	Performa nce
1 400 0	R	0.82-0.97	0.97
02 350 S W 300	Slope	0.83-0.97	0.955
250	Interce pt	35.5 DU	5.4 DU
200 250 300 350 400 450 500 Brewer TCO [DU]	RMSE	7 %	2.35 %

(Juseon Bak, Gang Hyun Paik, Jae H. Kim)

NO2

National Institute of Environmental Research

Validation with OMI L1b

NO2 SCD (GEMS algorithm)

March, 2015

NO2	Target	Performa nce
R	0.8	0.98
Slope	0.5	1.2
Intercep t	3.0 [10 ¹⁵ cm ⁻²]	1.2 [10 ¹⁵ cm ⁻²]

(Hyunkee Hong, Hanlim Lee)

SO2

НСНО

National Institute of Environmental Resear

March

(Hyeongahn Kwon, Rokjin Park)

OMI standard HCHO SCD [x10" molec. om*]

AOD, SSA, and HGT

National Institute of Environmental Research

Summary

National Institute of Environmental Research

- L0-1 and L1-2 algorithms are under the development to be ready for the lau nch of GEMS in March 2019.
- L1-2 algorithm for gases and aerosols show reasonable performances, but requires further improvement, hourly retrieval in AMF, S/T separation in particular.
- Careful consideration of aerosol is required to retrieve trace gas concentration from geostationary satellite remote sensing, especially for absorbing aerosols in particular.
- Preflight test results to characterize stray light, polarization, spectral accuracy, diffuser BTDF, dark current etc. can provide more accurate analysis on the GEMS performance and L2 algorithm.
- Synergy with AMI and GOCI-2 will provide more reliable products of aerosol and cloud, which eventually improve the accuracy of trace gas column density.

GEMS launch

National Institute of Environmental Research

GEMS will be launched in 2019!

French launcher Ariane 5 lifts off Arabsat-5A and South Korea's COMS satellites in French Guiana one minute after the launch window opened at 6:41 p.m. Saturday local time (GMT 0941). (Xinhua/AFP Photo)

National Institute of Environmental Research

THANK YOU