CEOS Meeting 29 June 2017, Paris

Cal/Val activities for IASI-NG

Cyril Crevoisier CNRS-Laboratoire de Météorologie Dynamique

ISSWG (IASI-IASI-NG Sounding Science Working Group): Cathy Clerbaux, Vincent Guidard, Fiona Smith, Raymond Armante, Thomas August, François Bermudo, Claude Camy-Peyret, Pierre Coheur, Andrew Collard, Adrien Deschamps, Dave Edwards, Antonia Gambacorta, Bob Knuteson, Marco Matricardi, Tony McNally

cyril.crevoisier@lmd.polytechnique.fr

The IASI instrument

IASI (Infrared Atmospheric Sounding Interferometer) is a Fourier Transform Spectrometer that measures infrared radiation emitted from the Earth.
It has been developed by CNES, in collaboration with EUMETSAT.

•IASI provides

-8461 spectral channels between 645 and 2760 cm⁻¹ (15.5 - 3.63 μm)
-with a spectral resolution of 0.5 cm⁻¹ after apodisation ("Level 1c" spectra)
-the spectral sampling interval is 0.25 cm⁻¹.

-nadir FOV: 12 km at nadir.

Retrievals of several atmospheric and surface variables over land/sea by day/night.

A whole suite of atmospheric variables retrieved from IASI

•IASI addresses the needs of three communities that are more and more connected: Numerical Weather Prediction | Atmospheric Composition | Climate

More than 25 species are observed, some well quantified (O₃, CO, CH₄), some only detected (SO₂, HNO₃, NH₃, formic acid, methanol) in special situations (fires, volcanoes).
 Monitoring of several Essential Climate Variables

From IASI to IASI-NG

	2006	2012	2018	
IASI	Metop-A	Metop-B	Metop-C	

From IASI to IASI-NG

•Objectives of the mission:

•To assure the continuity of IASI for NWP, atmospheric chemistry and climate applications.

•To improve the vertical coverage of the atmosphere (lower part of the troposphere, the UT/LS region).

•To improve the precision of the retrievals and to allow the detection of new species.

•Characteristics:

- -spectral coverage: 645 2760 cm⁻¹
- -spectral resolution: 0.25 cm⁻¹ after apodisation (0.50 cm⁻¹ for IASI)
- -spectral sampling: 0.125 cm⁻¹ (0.25 cm⁻¹ for IASI).
- -reduction of the radiometric noise by at least a factor of ~2 as compared to IASI.

Crevoisier et al., AMT, 2014 5

Impact of improved spectral and radiometric caracteristics

For most of the atmospheric species, there is no difference between KBr and ZnSe scenarios.

IASI-NG: summary

	L	ASI	IAS	SI-NG	
Chemistry	DOFs Error (%)		DOFs	Error (%)	What the 'NG' brings
O ₃	3-4	PBL : 60% Tropo : 11%	4-5	PBL : 40% Tropo : 8%	More information in PBL
со	1-2	PBL : 16% Tropo : 8%	2-3	PBL : 10% Tropo : 6%	More information in PBL
HNO ₃	1 or less		2		Both tropo and strato
NH ₃ ^a	detected	-	measured	-	> instrumental noise
Methanol ^a	detected	-	measured	-	> instrumental noise
$C_2H_4^a$	detected	-	measured	-	> instrumental noise
SO ₂ -volcanos	lf > 2DU	-	lf > 1 DU	-	+ Altitude of the plume
Climate	Climate DOFs Error (%)		DOFs Error (%)		What the 'NG' brings
H ₂ O	5-6	~13%	6-7	~10%	Error improved by 1.5
Т	6	~0.6K	12	~0.45 K	Error improved by 2.5
CO ₂	1 or less	~1%	1-2	<1%	Low troposphere
CH4	1or less	~3%	1-2		Less interferences
N ₂ O	detected	-	measured	-	
Aerosols dust				More types	
Emissivity		0,04 @4µm		0,02 @4µm	

Calibration/Validation of IASI-NG

• Strong heritage from IASI and other IR sounders: several activities can be directly applied to IASI-NG.

• For level1: expertise of monitoring and intercomparison activities performed at CNES/ EUMETSAT and some labs, especially in the framework of GSICS.

• For level2:

- The challenge: more than 25 atmospheric species retrieved or detected, in addition to thermodynamics, clouds, aerosols, surface characteristics.
- Aiming automatisation of validation and monitoring tools.
- But:
- Requirements for IASI-NG are tighter
- Some new products required for IASI-NG
- dedicated campaigns when no coordinated network and routine data flux exist)

Thermodynamics variable

Product	Vertical Resolution	Accuracy	Reference data source
			Sondes
Tomporaturo profilo	LT, MT: 0.8 km	LT, MT: 0.8 K	RO dry-T strato
remperature prome	UT, S: 2 km	UT, S: 1.2 K	NWP analysis
			Can we demonstrate 0.8K?
			Sondes
	LT: 1.2 km	LT: 5 %	NWP analysis
	MT, UT: 1.5 km	MT, UT: 7 %	Ground-based Lidar, MWR
prome	S: 3 km	S: 20 %	Can we demonstrate 5% ?
			Other? LHD?
Motor vopour total			Ground-based GPS
	N/A	5 %	High resolution radiometer?
COIUIIIII			Other?

- A lot has been done with IASI.
- Challenges:
 - Going towards operational.
 - how to validate improved precision wrt IASI?

Product	Vertical Resolution	Accuracy	Reference data source
			Buoys
Soo surfaca tamparatura	NI / A	0 2 K	OSTIA
Sea surface temperature	N/A	0.5 K	High resolution LEO/GEO
			radiometers
			Ground-based radiometers
Land surface temperature	N/A	1 K	Space-based high resolution
			radiometers, e.g. SEVIRI LSA
les surface temperature		1 1	In situ measurements
	N/A	ΙN	High-resolution radiometers?
Land and ice surface	NI / A	1 0/	Direct measurments?
emissivity	IN/A	1 7o	Aircraft (ARIES?)

Comparison of IASI and ARIES emissivity from the MEVEX Oman campaign, May 2009

Product	Vertical Resolution	Accuracy	Reference data source
Cloud detection and fractional coverage	6 km	10 %	GEO/LEO imagery Ground-based WSI, other ?
Cloud top phase	N/A	10 %	???
Cloud top height /pressure	N/A	0.2 km	Ground-based cloud radar, Lidars Space-based active sensors (CALIPSO, EarthCare)
Cloud drop effective radius at cloud top	N/A	5 µm	???
Cloud liquid water path from MWS and IAS	N/A	5 %	Ground-based radar, MWR? Space-borne data: EartCare, CloudSat? Can we demonstrate 5% ?

- Very few validations have been done with IASI.
- Statistical comparison of cloud climatologies (e.g GEWEX cloud assessment).
- Common plan with 3MI would be an asset.

Aerosols

Validation of IASI

Product	Reference data source				
	GEO/LEO imagery				
Dust AOD at 10 µm	Aeronet				
Dust mean altitude	Ground-based and airborne lidars, space lidars ?				
Effective radius					
	MODIS AOD				

Atmospheric composition

Product	Vertical Resolution	Accuracy	Reference data source
Carbon monoxide profile	3 km	3 km LT: 30 % MT: 25 % HT, S: 20 %	In situ measurements (airborne, ground) Space-borne missions? Other?
Carbon monoxide partial column	3 km	10 %	NDACC ground stations
Ozone profile	3 km	LT,MT, UT: 20 % S: 10 %	O ₃ sondes Other space missions? Model?
Ozone total column	N/A	5 %	Ground Brewer, Dobson
Sulphur dioxide total column	N/A	50 %	?
Nitric acid partial column	T, S	20 %	NDACC?

The challenge: more than 25 atmospheric species retrieved or detected.

How to fully validate columns?

An example: Validation of IASI CO

NDACC

Aircraft

Also done for NH3 (Dammers et al., 2016), and Ozone Total and Partial Column

- In IPY/POLARCAT biomass burning plumes transport has been observed from Siberia and Kazakhstan across the North Pole to North America.
- Biomass burning plumes have been used as a contrasted signal to validate spaceborne IASI measurements of pollutants (CO).

Greenhouse gases

Product	Vertical Resolution	Accuracy	Data source
Methane mid-tropo. column	N/A	<1%	AirCores, Aircraft,
Carbon dioxide mid-tropo. column	N/A	<1%	Space Carbon mission?, Ground- based FTIR (NDACC)
Nitrous oxide mid-tropo. column	N/A	10 %	Models/Assimilation (CAMS)

•Mean value: ~1800 ppb.

•Stratospheric decrease: -800 ppb over 100 hPa (~10 km).

•Strong differences between atmospheric models.

• Merlin total column

 \rightarrow between the 4profiles: différence in XCH4 between 6 and 12 ppb...

• IASI/IASI-NG : mid-tropospheric column

 \rightarrow between the 4 profiles: differences ranging from 13 to 26 ppb...

16

Example of validation of IASI CH₄ mid-tropospheric column

- AirCore: atmospheric air sampler to measure 0-30 km profiles of CO_2 , CH_4 , CO, C13, H_2O/HDO , NH_3 , ...
- Originally designed at NOAA (Karion et al., 2010). Several EU teams now making measurements: LMD/LSCE, U. Groningen, U. Frankfurt, FMI, etc.
- \rightarrow Use of profiles measured at Timmins (Canada), Kiruna (Sweden), Trainou-Orléans and Sodankylä to validate IASI CH₄ mid-tropo. columns:

Membrive et al., AMT, 2017

 \rightarrow Validation of IASI CH₄ columns in the NH.

Validation through data assimilation and evaluation with TC

- IASI CH_4 from LMD and TANSO-FTS CH_4 from SRON are assimilated within C-IFS at ECMWF (CAMS).
- Evaluation is performed against TCCON stations (XCH4) and HIPPO aircraft profiles.

LMD

IA/I>NG

1. Compliance matrix

What data (and their merits) for what product?

2. Short-term validation

- Aircraft campaigns (SAFIRE, DLR, FAAM facilities)
- Balloon campaigns (CNES balloon program)
- Combined ground-aircraft-balloon-surface campaigns at super sites

3. Long-term validation

- Satellite inter-comparisons
- ground networks \rightarrow need for continuous support!!
- Model comparison/data assimilation (indirect)

4. Pre-launch validation requirements

- Selection of ground-based supersites
- Instrument upgrade/validation ?
- Validation test campaign

Validation strategy

• Coordination of validation activities between missions would be a real asset:

- within Metop-SG (IASI-NG, 3MI, Sentinel5/UVNS, etc).
- between different platforms.
- → Best use of funding, man-power, aircraft availability, scientific objectives.

• Specifically for GHG:

- joint validation strategies between Merlin, MicroCarb and IASI-NG (all launched around 2021).
- preparatory activities are on-going:

→ Multi-instrument campaigns at Trainou-Orléans (LMD-LSCE-LERMA):

- 2 week-campaign in April 2017: ICOS/TCCON + EM27/SUN (KIT/LERMA)
- +0-3 km aircraft + AirCore-light + OCO-2 (target mode) + IAGOS (10 km).
- plan: a campaign every 3 months.

\rightarrow CoMet campaign (coordinated by DLR):

- May 2018.
- flights between TCCON EU stations.

Example of validation of IASI CH4 mid-tropospheric column

 \rightarrow Validation of IASI CH₄ columns in the NH.

 \rightarrow Systematic overestimation of CH₄ in the stratosphere by the models

3 CNES missions

	MicroCarb	Merlin	IASI/IASI-NG
Date of launch	2021	2021	2007-2012-2018 2021 -2028-2035
Local time	10:30	6:00-18:00	9:30-21:30
Level 2	Total column of XCO2	Total column of XCO4	mid-tropo. column of CO2 and CH4
Syst. error	< 0.1 ppm	< 3 ppb	< 1 ppm < 5 ppb
Random error	< 1 ppm	< 27 ppb	< 3ppm < 12 ppb
Geometry	Swath: 13km 3 FOV 40km2	50km	Swath: 2000 km FOV: 12 km@nadir

Coordination of validation activities between these 3 missions would be highly valuable!!

Validating CO2 columns?

- Mean value: ~395 ppb.
- Strong variation near the surface (< 4 km).

From IASI to IASI-NG

IASI and **IASI-NG** spectrum

Averaged over the whole tropical TIGR situations Computation with the 4A/OP RT code, using the GEISA-11 spectroscopic database

Validation plan

Goal:

- To assess the usefulness of GHG columns products for their intended scientific applications
- To assess the products quality by comparing them to data which are regarded as a reference.

Central questions:

- How representative are the satellite retrieved products for the actual atmospheric state?
- What are the systematic and random errors?
- How well are the temporal variations of XCO2/XCH4 captured (daily to annual)?
- How well are spatial structures captured, from local emission sources to global features?

How:

- Definition of quantity to be validated.
- Identification of already existing and planned instruments, networks, programs, and satellite missions which are potentially suited to be included in the validation organization.
- Identification of potential gaps (updating of existing sensors ? to start the development of missing validation instruments or concepts?)
 - \rightarrow organization of the scientific community (both at national and international levels).

Scope:

Short-term, long-term or campaign-based validation activities.

Validation plan: example of Merlin

	XCH4	DAOD	Met. parameter	Representa tivity	SSE	Clouds	On-line freq.	Spect. purity	Albedo	Canopy			
GAW surface networks: Mixing ratios values Mixing ratios trends Surface, passive TCCON, NDAC	 										- ICOS, NOAA/ESRL, etc through GA - TCCON, <i>COCCON</i> → total columns		
Surrace, active UDAR DIAL and others Ceiloeter, Radar	***	••••	**	***		++++ ++++	+++				Lidars		
Balloon, in-situ Aircore, pico-SDLA	+++	••••	+++	++							 Balloons (AirCore, Amulse, pico- SDLA, SPECIES) 		
Aircraft, in-situ CRDS, TDLAS	++	s++	***	**							AirCraft:		
Aircraft, passive r.s. DOAS ,	++										 Passif (Bremen MAMAP, 		
Aircraft, active IPDA LIDAR	+++	+++		+++	+++	+++	+++	+++	+++	+++	UK GHOST, ESA ACADIA, SRON SPEX) - Actif (CHARM-F)		
Satellite, passive DOAS, FTIR Cloud Imager SWIR	++					••			++		- Drones?		
Satellite, active Lidar, Radar				++	++	++				++	Satellites		
Models MACC, Copernicus	0				o						Models, Assimilation		

Table 5.1.1: Synthesis table of the MERLIN products and parameter (row 1) versus the instruments of the validation platforms and activities (column 1) discussed in this document. Several level validation are estimated : o : comparison, + : indirect validation, ++ : direct validation with hypotheses, +++ : prioritized direct validation

Balloon-borne measurements

CNES balloon facilities:

- •Annual BSO campaigns:
 - Open Statospheric Balloons for heavy payloads (>100kg)
 - 3 sites: Timmins (Canada), Kiruna (Sweeden) and a future tropical site.
- •Meteorological balloons (<3 kg) from Aire-sur-Adour (ASA).
- •BPS ballons (e.g. Stratéole-2, ConcordIASI): See P. Cocquerez presentation.

Alice

prings

Balloon-borne measurements

AirCore profiles and associated uncertainties

• Excellent agreement between the AirCores, especially for CH₄ (within 2 ppb when resolution taken into account)

- For CO₂: <0.2ppm
- For CH₄: <3ppb
- Important vertical gradients translate into large uncertainties.

• Creation of a new « super-site » in the South-West of France:

- ASA is the main candidate due to available CNES infrastructure + man power.
- Could combine: continuous measurements of CO2/CH4/CO for ICOS + FTS (either TCCON or COCCON type instruments) + regular balloon launches (AirCore, maybe Amsule) + regular SAFIRE flights.
- Could be used to host specific campaigns.
- Interest of a station in French Guyana to be assessed.

• Need for coordinated measurement campaigns:

- Involvement of different vectors/space mission/scientific objectives.
- -3 main regions of interest:
 - mid-latitudes (linking TCCON/ICOS stations)
 - tropics (benefiting from new balloon site?)
 - high-latitudes (from Kiruna: BSO + meteorological balloons + TCCON/NDACC + COCCON + YAK) → a great project!

• Participating to the funding of TCCON/NDACC networks would be greatly appreciated.

The CoMet campaign

<u>Carbon Dioxide and Methane Missions for HALO</u>

The CoMet campaign

<u>Carbon Dioxide and Methane Missions for HALO</u>

CoMet: Complementary and Innovative Payload

The CoMet campaign

<u>C</u>arbon Dioxide and <u>Met</u>hane Missions for HALO

Tentative HALO Flights

Scientific Flights: 18 April – 17 May 2017 63 Flight hours, ~8 Flights Base: Oberpfaffenhofen (EDMO)

- TCCON sites + AirCore launches
- Latitude gradients
- Coal mines (Poland)
- Power plants
- Landfills
- Urban area (e.g. Berlin)
- Volcanoes
- Orography
- Vegetation
- Albedo variations
-

La campagne CoMet

<u>Carbon Dioxide and Methane Missions for HALO</u>

Measurement Strategies of CoMet

