

17 years of MOPITT carbon monoxide data: results and prospects for future satellite CO observations

Helen Worden (MOPITT U.S. P.I.) and the NCAR/ACOM MOPITT team

Why CO?

- Important role in atmospheric chemistry & climate
 - Main sources are incomplete combustion (both fires & fossil fuel), biogenic emissions & hydrocarbon oxidation
 - Primary sink is oxidation by OH more CO => longer CH₄ lifetime
 - Precursor to CO₂ and tropospheric O₃
 - Indirect radiative forcing (RF) of 0.22 W/m² for CO emissions (IPCC AR5)
- Ideal tracer for pollution transport
 - Lifetime is weeks to months, so CO is transported globally, but not evenly mixed (like longer lived species)
 - Easy to measure elevated CO above background levels with infrared spectra
- Global direct emissions of CO (~half of atmospheric CO)
 - ~500-600 Tg/yr anthropogenic (relatively stable)
 - ~300-600 Tg/yr biomass burning (large interannual variability)

MOPITT Instrument Concepts: Simple Gas Filter Correlation Radiometer (GFCR)

MOPITT Instrument Concepts: Thermal and Shortwave Infrared Measurements

MOPITT Multispectral Measurements: China

Worden et al., JGR, 2010

AĊŴM

MOPITT Multispectral Measurements: CONUS

PITT

Worden et al., ACP, 2013

AĊŎM

Impact of decreasing CO on methane lifetime

Tropics (30°S to 30°N)

$$\frac{d[CH_4]}{dt} = S_{CH_4} - R1; R1 = k_1[CH_4][OH]$$
$$\frac{d[CO]}{dt} = S_{CO} - R2; R2 = k_2[CO][OH]$$
$$\frac{d[OH]}{dt} = S_{OH} - R1 - R2 - R3; R3 = k_3[X][OH]$$

Gaubert et al., in prep.

Question: Did ENSO-driven fires in Indonesia, 2105, influence Asian pollution?

Rainfall and CO images from NASA Earth Observatory

AĊŎM

MOPITT CO vertical structures (Aug,Sep,Oct 2015)

Lon: 110-120E Averages

Multispectral retrievals distinguish signatures of pollution sources and transport

SA ASC

NA SA

Satellite-based estimates of reduced CO and CO₂ emissions due to traffic restrictions during the Beijing 2008 Olympics (MOPITT & WRF-Chem)

- Total CO reduction from Olympics = 2.95 ±1.8 Gg[CO]/day
- 60% reduction in the transportation sector (bottom-up estimate)
- Using FF CO/CO₂ emission factor for Beijing gives 60 ±36 Gg[CO₂]/day for reduction in CO₂ emissions
- This is ~1/360 of the reduction in CO₂ emissions needed to keep warming under 2°C by 2100 (IPCC-RCP2.6), which suggests urban traffic controls could have a significant impact on CO₂ emissions given there are now 490 cities with more than 1 million people [Worden et al., *GRL*, 2012]

CHRONOS Proposal to NASA EVI-4

Future CO observations from Geostationary Earth Orbit (GEO) in the next decade:

- MTG-S (IRS) on Sentinel 4: Sub-hourly, 4x4 km² spatial res., TIR CO.
- geoCARB: Sub-daily, 4.4 x 5.7 km² spatial res., W. Hemis. domain for NIR column CO - selected for NASA EVM-2
- CHRONOS: Sub-hourly, 4x4 km² resolution at center of N. American domain for TIR + NIR CO – if selected

Conclusions

MOPITT has the longest satellite record of global CO and CO concentrations have been decreasing.	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Multispectral observations allow a full picture of sources and transport	
Future satellite CO observations will have finer spatial/temporal resolution but no planned multispectral measurements	to Satellite Instruments with Nadir CO Measurements the construction of the construct
Need more OSSEs to understand combined assimilation of separate TIR an NIR observations. Do we see the same increase in information as a joint retrieval?	4.6 μm 4.6 μm

Thanks!

SATAS

MOPITT

MOPITT V5J CO shows transport over California mountains Huang et al., JGR, (2013)

CSA ASC

NASA

MPITT

NCAR

MOPITT CO vertical structures (August) – Asian Monsoon

High CO in the UTLS – due to Asian monsoon circulation

ERA_Interim potential temperature and winds

MOPITT V6J used in multi-satellite analysis of Amazon fires

• Bloom, et al., *GRL*, 2015

CSA ASC NASA

NI(

AĊ

First detection of volcanic CO from space

MOPITT CO

MODIS AOD

OMI SO₂

Iceland Eyjafjallajökull eruption, April 19, 2010

Martínez-Alonso, GRL, 2012

Changes in SO₂ and NO₂ since 2005 from OM

(Krotkov et al., 2015)

AĊŎM

CO emissions trends: Assimilating MOPITT in GEOS-Chem Model

CHRONOS Proposal to NASA EVI-4

David Edwards, *Principal Investigator* Helen Worden, *Deputy P.I.* and the CHRONOS Science Team

Ball Aerospace & Technologies Corp.

Submitted 18 November 2016

Quantifying changing methane emissions and atmospheric pollution transport for informed air quality, climate and energy policy decisions

> > AĊŴM

Why go to GEO?

100

Timo				194 (A.K. 194 (94) (A. 194 (94) (A. 194 (94) (194 (94) (194 (194 (194 (194 (194 (194 (194 (194
Scale Annual	Emission trends for oil & gas, feedlots, landfills, wastewater (~30 ppb CH ₄)	State/regional annual budgets	North American budgets and trends (CO, CH ₄)	Hemispherical gradient and interannual variability (CO, CH ₄)
Monthly	Trends by urban area (CO, CH ₄) County-scale CH ₄ emissions inventories Seasonal changes in landfill emissions (~10 ppb CH ₄)	(CO, CH ₄) Wetland emission changes (~30 ppb CH ₄)	El Nino response in growth rate (~20 ppb/yr CH ₄)	Southern Hemisphere biomass burning (CO, CH₄)
Weekly	Urban weekend effect (~50 ppb CO)	OS Large fires	GEO	Inter-continental transport (CO)
Daily	Small fires (1-10 ppm CO; ~30 ppb CH4)ONLY Wetla temper dependependependependependependependepe	(CO, CH ₄) erature idence bb CH ₄)	& LEU	Global fire only contributions (CO, CH_4)
Hourly	Urban AQ daily evolution (1-2 ppm CO) Interstate pollution (10-50 ppb CO	ution [*] Wild fire smok plume AQ) (100-300 ppb (ke US inflow/outflow of air pollution CO) (20-100 ppb CO)	Spatial Scale
P l	oint sources to R Jrban (<10 km) (<'	egional 1000 km)	Continental (<5000 km)	Global

Outline

MOPITT CO measurements and data record
Trends in CO abundance & emissions
Applications of MOPITT multispectral observations
Future CO observations from space
Conclusions

