

The Tropospheric Ozone Assessment Report: Quantifying the global distribution and trends of tropospheric ozone using satellite instruments

Brice Barret, Laboratoire d'Aérologie, Toulouse

Owen Cooper and Audrey Gaudel, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA; NOAA Earth System Research Laboratory, Boulder, Colorado

Helen Worden, NCAR, Boulder Cathy Clerbaux, LATMOS/IPSL , Catherine Wespes, P.-F. Coheur and Daniel Hurtmans , Université Libre de Bruxelles Eric Le Flochmoen, Valérie Thouret and Hervé Petetin , Laboratoire d'Aérologie/OMP, Toulouse Gaelle Dufour and Juan Cuesta, LISA/IPSL, Paris Jerry Ziemke, NASA Goddard Space Flight Center and Morgan State University, Baltimore, Maryland, USA Guanyu Huang and Xiong Liu at Harvard-Smithsonian Center for Astrophysics Richard Siddans and Brian Kerridge, Rutherford Appleton Laboratory Alexei Rozanov and Nabiz Rahpoe at Institute of Environmental Physics, University of Bremen, Germany Martin Schultz, Forschungszentrum Juelich

All figures showing TOAR analyses are preliminary and therefore should not be cited.

Final figures will be available after the report has been accepted for publication by the peer-reviewed journal, *Elementa: Science of the Anthropocene*.

Tropospheric Ozone Assessment Report (TOAR)

Global metrics for climate change, human health and crop/ecosystem research

Mission:

To provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause.

Deliverables:

- 1) The first tropospheric ozone assessment report based on all available surface observations, the peer-reviewed literature and new analyses.
- 2) A database containing ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity.

http://www.igacproject.org/activities/TOAR

Stakeholders:

Task Force on Hemispheric Transport of Air Pollution

TOAR Organization

TOAR is a science effort initiated by IGAC, and developed by an international team of experts.

TOAR receives financial and logistical support from:

- IGAC

- Forschungszentrum Jülich

 US National Oceanic and Atmospheric Administration (NOAA)

IÜLICH

TOAR Steering Committee Members:

Owen R. Cooper (Chair) CIRES U. of Colorado/NOAA Earth System Research Laboratory, Boulder, USA

Aijun Ding Institute for Climate and Global Change Research, Nanjing University, Nanjing, China

Mat Evans University of York, UK

Zhaozhong Feng Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

Ian Galbally CSIRO Marine and Atmospheric Research, Aspendale, Australia

Allen Lefohn A.S.L & Associates, Helena, Montana, USA

Manish Naja Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India

Elena Paoletti Institute for Sustainable Plant Protection, National Research Council, Florence, Italy

Martin Schultz Forschungszentrum Jülich, Germany

David Tarasick Air Quality Research Division, Environment Canada, Downsview, Canada

Anne Thompson NASA Goddard Space Flight Center, Greenbelt, USA

TOAR members: 220+ scientists from 36 nations, representing research on all 7 continents

TOAR Database

TOAR has built the world's largest database of ozone metrics.

Developed by Forschungszentrum Jülich: *Martin Schultz*, Snehal Waychal, Sabine Schröder, Olga Lyapina and Michael Decker

Ozone observations from over 9000 monitoring sites in dozens of countries

Displaying 9272 data series out of 30227 at 9263 stations out of 11663

Increase of daytime average ozone between 2000-2014 in NH winter

1374 non-urban sites in DJF

Decrease of daytime average ozone between 2000-2014 in NH summer

1784 non-urban sites in JJA

Increase of daytime average ozone between 2000-2014 all seasons over East Asia

IAGOS Ozone profiles

W Europe and NE USA:
- significative increase in winter
- nul to negative trend in

summer

Asia:

- increase for all seasons and regions
- largest increases (up to 70%) from MAM to SON

Tropospheric Column Ozone (TCO) TOAR satellite products

Product name and institution	Horizontal resolution	Horizontal coverage	Vertical range (tropopause definition)	Temporal resolution/time of day	Record length
OMI/MLS NASA GSFC	1° × 1.25°	60°S - 60°N	Surface to tropopause (WMO 2 K km ⁻¹ lapse-rate)	Monthly/ Seasonal 13:45	2004 – 2016, continuing
GOME & OMI Harvard-Smithsonian Center for Astrophysics (HSCfA)	1° × 1.25°	60°S - 60°N	Surface to tropopause (WMO 2 K km ⁻¹ lapse-rate)	Monthly/Seasonal OMI: 13:45 GOME: ??:??	1995 – 2015, continuing
OMI-RAL Rutherford Appleton Laboratory (RAL)	5°x5°	60°S - 60°N	Surface to tropopause (WMO 2 K km ⁻¹ lapse-rate)	Monthly/Seasonal 13h45	1995-2016, continuing
IASI-LISA LISA	Averaged over 0.25°x0.25° grids	Regional (Europe, Asia)	Surface-6 and 6-12 km	Seasonal 9:30	2008-2014, continuing
IASI+GOME2 LISA	5°x 5°	Regional (Europe, Asia) Global since 2017	Surface to 3 km, and 3-9 km	Monthly/ seasonal 9:30	2009-2010
IASI - FORLI ULB and LATMOS/IPSL	12 km footprint Averaged over 5°x 5° grids	90°S-90°N	Surface to tropopause (WMO 2 K km ⁻¹ lapse-rate)	Seasonal 9:30	2008 – 2016
IASI - SOFRID LA/OMP - Toulouse	12 km footprint Averaged over 5°x 5° grids	80°S-80°N	Surface to tropopause (WMO 2 K km ⁻¹ lapse-rate)	Seasonal 9:30	2008 – 2015, continuing

LISA IASI and IASI+GOME 2 tropospheric Ozone

 \Rightarrow Increased sensitivity to lower troposphere \Rightarrow no global retrievals on the whole IASI period for trends calculation

Surface-6 km **IASI** partial ozone columns [DU] over East Asia (2010-2014). Surface-3 km **IASI+GOME2** partial column ozone over East Asia (2010) (global retrievals since 2017 /AERIS data centre).

TCO Averaging Kernels for 5 global satellite products

OMI and IASI -Higher sensitivity in summer than in winter - sensitivity 200-800 hPa - little 2010-2011 differences

OMI-RAL -Sensitivity down to the surface -no winter-summer difference

TCO annual means (DU) from TOST (sondes) and Satellites (2010-2014)

Main TCO features captured by 6 products

-high TCO northern mid-lat land/oceans

- tropical wave-1 with South-Atlantic max and central Pacific min.

high TCO from Africa to Australia over
Indian Ocean (less pronounced in TOST)

OMI/MLS tropospheric column ozone, 2010–2014 Months: 1 2 3 4 5 6 7 8 9 10 11 12

OMI RAL tropospheric column ozone, 2010-2014 Months: 1 2 3 4 5 6 7 8 9 10 11 12

IASI-SOFRID daytime tropospheric column ozone, 2010-2014, Months: ANNUAL

TCO trends from Satellites : <u>discrepancies</u>

-0.7

-0.4

TCO from Satellites: <u>agreement</u>

Number of products with significant positive trends

Number of products with significant negative trends

Number of products with statistically significant

positive (red) trendnegative (blue) trend

Very new exciting result:

Ozone burden (2014-2016) from 5 satellite products:

296 Tg <u>**±** 4%</u>

Tropospheric ozone burden trends Seasonal variations consistently captured by 6 products

OMI

- Global increase = 1.5-2.8 Tg/yr
- NH and SH 0.3-1.8 Tg/yr

IASI

Global decrease = 1.4-2.1 Tg/yrNH and SH 0.5-1 Tg/yr

Note: Trends over different periods Convergence over IASI period

p-value

0.00

0.00

0.01

0.00

0.00

0.03

p-value

0.00

0.09

0.24

0.00

0.01

0.01

p-value

0.01

0.05

0.04

0.00

0.00

0.65

Conclusions:

- NH surface data => significant seasonal trends with winter increase and summer decrease
- NH IAGOS profiles => increase of tropospheric O3 with largest trends in Asia
- 3) Satellite data => 3 OMI and 2 IASI products
 - UV-Vis and TIR sensitive to mid-upper troposphere
 - OMI and OMI/MLS: global increase
 - IASI-SOFRID and FORLI: global decrease
 - OMI and IASI consistent tropical/Asian increase

=> different periods for GOME/OMI, OMI/MLS, IASI-SOFRID and IASI-FORLI but relative convergence for the IASI period (Ozone burden to +/-4% for 2014-2016)

Next steps:

- 1) Finish the assessment report and submit all 8 papers to *Elementa*
- 2) Release the database of ozone metrics to the general public in July 2017
- 3) Encourage human health, ecosystem and climate researchers to utilize the database for their impact studies.
- 4) Continue collaborative research to reconcile the trend differences between satellite products
- 5) Begin planning TOAR-II