The Tropospheric Ozone Assessment Report:
Quantifying the global distribution and trends of tropospheric ozone using satellite instruments

Brice Barret, Laboratoire d’Aérologie, Toulouse

Owen Cooper and Audrey Gaudel, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA; NOAA Earth System Research Laboratory, Boulder, Colorado
Helen Worden, NCAR, Boulder
Cathy Clerbaux, LATMOS/IPSL, Catherine Wespes, P.-F. Coheur and Daniel Hurtmans, Université Libre de Bruxelles
Eric Le Flochmoen, Valérie Thouret and Hervé Petetin, Laboratoire d’Aérologie/OMP, Toulouse
Gaelle Dufour and Juan Cuesta, LISA/IPSL, Paris
Jerry Ziemke, NASA Goddard Space Flight Center and Morgan State University, Baltimore, Maryland, USA
Guanyu Huang and Xiong Liu at Harvard-Smithsonian Center for Astrophysics
Richard Siddans and Brian Kerridge, Rutherford Appleton Laboratory
Alexei Rozanov and Nabiz Rahpoe at Institute of Environmental Physics, University of Bremen, Germany
Martin Schultz, Forschungszentrum Juelich
Please note:

All figures showing TOAR analyses are preliminary and therefore should not be cited.

Final figures will be available after the report has been accepted for publication by the peer-reviewed journal, *Elementa: Science of the Anthropocene*.
Mission:
To provide the research community with an up-to-date scientific assessment of tropospheric ozone’s global distribution and trends from the surface to the tropopause.

Deliverables:
1) The first tropospheric ozone assessment report based on all available surface observations, the peer-reviewed literature and new analyses.
2) A database containing ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity.

http://www.igacproject.org/activities/TOAR

Stakeholders:
TOAR Organization

TOAR is a science effort initiated by IGAC, and developed by an international team of experts.

TOAR receives financial and logistical support from:
- IGAC
- Forschungszentrum Jülich
- The World Meteorological Organization
- US National Oceanic and Atmospheric Administration (NOAA)

TOAR Steering Committee Members:

Owen R. Cooper (Chair)
CIRES U. of Colorado/NOAA Earth System Research Laboratory, Boulder, USA

Aijun Ding
Institute for Climate and Global Change Research, Nanjing University, Nanjing, China

Mat Evans
University of York, UK

Zhaozhong Feng
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

Ian Galbally
CSIRO Marine and Atmospheric Research, Aspendale, Australia

Allen Lefohn
A.S.L & Associates, Helena, Montana, USA

Manish Naika
Aryabhata Research Institute of Observational Sciences (ARIES), Nainital, India

Elena Paoletti
Institute for Sustainable Plant Protection, National Research Council, Florence, Italy

Martin Schultz
Forschungszentrum Jülich, Germany

David Tarasick
Air Quality Research Division, Environment Canada, Downsview, Canada

Anne Thompson
NASA Goddard Space Flight Center, Greenbelt, USA
TOAR members: 220+ scientists from 36 nations, representing research on all 7 continents
TOAR Database

TOAR has built the world’s largest database of ozone metrics.

Developed by Forschungszentrum Jülich: Martin Schultz, Snehal Waychal, Sabine Schröder, Olga Lyapina and Michael Decker

Ozone observations from over 9000 monitoring sites in dozens of countries
Increase of daytime average ozone between 2000-2014 in NH winter

1374 non-urban sites in DJF
Decrease of daytime average ozone between 2000-2014 in NH summer

1784 non-urban sites in JJA
Increase of daytime average ozone between 2000-2014 all seasons over East Asia
IAGOS Ozone profiles

W Europe and NE USA:
- significative increase in winter
- nul to negative trend in summer

Asia:
- increase for all seasons and regions
- largest increases (up to 70%) from MAM to SON

Frankfurt

NE-USA

NE-China

Korea

(SE Asia (+O3 sondes))

South India
<table>
<thead>
<tr>
<th>Product name and institution</th>
<th>Horizontal resolution</th>
<th>Horizontal coverage</th>
<th>Vertical range (tropopause definition)</th>
<th>Temporal resolution/time of day</th>
<th>Record length</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMI/MLS</td>
<td>1° × 1.25°</td>
<td>60°S - 60°N</td>
<td>Surface to tropopause (WMO 2 K km⁻¹ lapse-rate)</td>
<td>Monthly/Seasonal 13:45</td>
<td>2004 – 2016, continuing</td>
</tr>
<tr>
<td>NASA GSFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOME & OMI</td>
<td>1° × 1.25°</td>
<td>60°S - 60°N</td>
<td>Surface to tropopause (WMO 2 K km⁻¹ lapse-rate)</td>
<td>Monthly/Seasonal OMI: 13:45 GOME: ???:??</td>
<td>1995 – 2015, continuing</td>
</tr>
<tr>
<td>Harvard-Smithsonian Center for Astrophysics (HSCfA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMI-RAL</td>
<td>5°x5°</td>
<td>60°S - 60°N</td>
<td>Surface to tropopause (WMO 2 K km⁻¹ lapse-rate)</td>
<td>Monthly/Seasonal 13h45</td>
<td>1995-2016, continuing</td>
</tr>
<tr>
<td>Rutherford Appleton Laboratory (RAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IASI-LISA</td>
<td>Averaged over 0.25°x0.25° grids</td>
<td>Regional (Europe, Asia)</td>
<td>Surface-6 and 6-12 km</td>
<td>Seasonal 9:30</td>
<td>2008-2014, continuing</td>
</tr>
<tr>
<td>LISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IASI+GOME2</td>
<td>5° x 5°</td>
<td>Regional (Europe, Asia)</td>
<td>Surface to 3 km, and 3-9 km</td>
<td>Monthly/seasonal 9:30</td>
<td>2009-2010</td>
</tr>
<tr>
<td>LISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IASI - FORLI</td>
<td>12 km footprint Averaged over 5°x5° grids</td>
<td>90°S-90°N</td>
<td>Surface to tropopause (WMO 2 K km⁻¹ lapse-rate)</td>
<td>Seasonal 9:30</td>
<td>2008 – 2016</td>
</tr>
<tr>
<td>ULB and LATMOS/IPSL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IASI - SOFRID</td>
<td>12 km footprint Averaged over 5°x5° grids</td>
<td>80°S-80°N</td>
<td>Surface to tropopause (WMO 2 K km⁻¹ lapse-rate)</td>
<td>Seasonal 9:30</td>
<td>2008 – 2015, continuing</td>
</tr>
<tr>
<td>LA/OMP - Toulouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LISA IASI and IASI+GOME 2 tropospheric Ozone

- Increased sensitivity to lower troposphere
- No global retrievals on the whole IASI period for trends calculation

Surface-6 km IASI partial ozone columns [DU] over East Asia (2010-2014).

Surface-3 km IASI+GOME2 partial column ozone over East Asia (2010) (global retrievals since 2017 /AERIS data centre).
TCO Averaging Kernels for 5 global satellite products

OMI and IASI
- Higher sensitivity in summer than in winter
- Sensitivity 200-800 hPa
- Little 2010-2011 differences

OMI-RAL
- Sensitivity down to the surface
- No winter-summer difference

OMI-MLS

DJF

JJA
TCO annual means (DU) from TOST (sondes) and Satellites (2010-2014)

Main TCO features captured by 6 products

- high TCO northern mid-lat land/oceans
- tropical wave-1 with South-Atlantic max and central Pacific min.
- high TCO from Africa to Australia over Indian Ocean (less pronounced in TOST)
TCO trends from Satellites: discrepancies

3 retrievals from OMI

OMI/MLS 2005-2016

OMI 2005-2015

OMI-RAL 2005-2015

IASI-FORLI 2008-2016

IASI-SOFRID 2008-2015

UV-vis

IR
Number of products with statistically significant
- positive (red) trend
- negative (blue) trend

Very new exciting result:
Ozone burden (2014-2016) from 5 satellite products:

296 Tg ± 4%
Tropospheric ozone burden trends
Seasonal variations consistently captured by 6 products

OMI
- Global increase = 1.5-2.8 Tg/yr
- NH and SH 0.3-1.8 Tg/yr

IASI
- Global decrease = 1.4-2.1 Tg/yr
- NH and SH 0.5-1 Tg/yr

Note:
Trends over different periods
Convergence over IASI period
Conclusions:

1) NH surface data => significant seasonal trends with winter increase and summer decrease
2) NH IAGOS profiles => increase of tropospheric O3 with largest trends in Asia
3) Satellite data => 3 OMI and 2 IASI products
 - UV-Vis and TIR sensitive to mid-upper troposphere
 - OMI and OMI/MLS: global increase
 - IASI-SOFRID and FORLI: global decrease
 - OMI and IASI consistent tropical/Asian increase
=> different periods for GOME/OMI, OMI/MLS, IASI-SOFRID and IASI-FORLI but relative convergence for the IASI period (Ozone burden to +/-4% for 2014-2016)
Next steps:

1) Finish the assessment report and submit all 8 papers to *Elementa*
2) Release the database of ozone metrics to the general public in July 2017
3) Encourage human health, ecosystem and climate researchers to utilize the database for their impact studies.
4) Continue collaborative research to reconcile the trend differences between satellite products
5) Begin planning TOAR-II