Case studies of CO and NO₂ as indicators of anthropogenic CO₂: Germany vs. India

Julia Marshall — CEOS AC-VC-14 — May 4, 2018 — College Park, MD

use of Satellite Measurements of Auxiliary Reactive Trace gases for fossil fuel CARBon dioxide emission estimation

> Project team: Dominik Brunner, Gerrit Kuhlmann (Empa) Valentin Clément, Christina Schnadt Poberaj (ETHZ/C2SM) Julia Marshall (MPI-BGC)

> > External Experts: Oliver Fuhrer (MeteoSwiss) Grégoire Broquet (LSCE)

The goals of SMARTCARB:

- Assess potential benefit of CO and NO₂ observations to quantify CO₂ emissions from satellite observations of city and power plant plumes
- Assist in the definition of Sentinel-7 mission requirements

Why point sources?

Cumulative CO₂ emissions vs. cumulative area over Europe, based on TNO/MACC-III inventory

CO₂ emissions concentrated on a small area:

- 90% emitted over less than 8% of area of
 - Europe
- 52% from point sources, primarily power plants

Different source categories are assigned different typical vertical profiles

Around Berlin, vertical distribution of emissions more similar for $NO_2 \& CO_2$ than for CO & CO₂

Different source categories assigned different temporal profiles (monthly, weekly, daily cycles)

Results

XCO₂

 NO_2

CO

+ 15% noise

+ 10% noise

+ 1 ppm noise 4 XCO₂ signal (ppm) 2 Berlin• XCO2 signation Lippendor 2 + 20% noise 2 (10¹⁵ molecules cm⁻²) NO₂ column 0 1 5 Schwarze Pum + 20% noise 1⁰ (10¹⁸ molecules cm⁻²) CO column 5 1

Sentinel-7, 1 x 1 km² vs. Sentinel-5, 7 x 7 km²

What this means for plume identification

- detection limit for a plume is about half the singlesounding precision
- detection limit using NO₂ for detecting the CO₂ plume is about 0.1 ppm

In this report we focus on the CO_2 emissions arising from anthropogenic activities, which constitute an addition of exogenous carbon in the climate system. We define "fossil CO_2 emissions" as the sum of CO_2 emissions from fossil fuel combustion, process CO_2 emissions from cement production, process CO_2 emissions from metal (ferrous and non-ferrous) production, and the CO_2 emissions from urea production, urea application and agricultural lime. Emissions from the combustion of biofuel (carbon neutral over one year) and from large-scale biomass burning (forest fires, peat fires) are not included.

Observing System to Monitor Fossil CO₂ emissions

Final Report from the expert group

A contrasting case: India

Yadu S

Dhanyalekshmi Pillai

Agricultural burning is a major part of the CO (and CO_2) budget

From "Tinkle Digest #314, Volume 29"

From MODIS imagery:

Increasing signal over time, despite government efforts to stop it

burning and bring pollution levels down in and around its capital New Delhi.

Anthropogenic signal (EDGAR + GFAS): November 29, 2017

CO

Compare:

Conclusions

- If the goal is the isolation of fossil signals alone, NO₂ is the way to go (but may not work as well for e.g. gas-powered power plants)
- Very useful for flagging CO₂ plumes for point source attribution, reducing wind uncertainties
- CO provides information about lowerefficiency combustion and biomass burning
- Analysis of all three simultaneously can facilitate process separation in different regions

The effect of different NO_x decay times

