PM2.5 vs AOD on Fine Time Scale

Qian Tan¹, Mian Chin², Hongbin Yu² ¹Bay Area Environmental Research Institute ²NASA GSFC

PM2.5 vs AOD

From satellite observable to air quality application

Global monitoring of air pollution over land from the Earth **Observing System-Terra Moderate Resolution Imaging**

Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

Aaron van Donkelaar,¹ Randall V. Martin,^{1,2} and Paul J. Villeneuve^{5,6}

¹Department of Physics and Atmospheric Science, Da for Astrophysics, Cambridge, Massachusetts, USA; 34 Canada; ⁴NASA Goddard Space Flight Center, Green Toronto, Ontario, Canada; ⁶Population Studies Division

and PM_{2.5} mass: Implicat

Jun Wang and Sundar A. Christor

Department of Atmospheric Sciences, Universi BY JASSIM AL-SAADI, JAMES SZYKMAN,* R. BRADLEY PIERCE, CHIEKO KITTAKA, DOREEN NEIL, D. ALLEN CHU, LORRAINE REMER, LIAM GUMLEY, ELAINE PRINS,* LEWIS WEINSTOCK.

IMPROVING NATIONAL AIR

OUALITY FORECASTS WITH

SATELLITE AEROSOL

OBSERVATIONS

and Jack Fishman

iter

nto.

nbia,

Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land?

air

Raymond M. Hoff & Sundar A. Christopher

Hoff ^C

Variation of PM2.5 & AOD

- Common factors
 - Synoptic systems
- Diurnal variation
 - Surface PM2.5
 - Emissions
 - Photochemical reactions
 - Boundary layer mixing
 - * AOD
 - Mass loading of aerosols
 - * Aerosol vertical distribution
 - ✤ H₂O/RH diurnal cycle

LEO vs GEO sampling

 $AOD \cong F(PM2.5_{surface}, PM_{3D}, Optical, RH_{surface}, H_2O_{column}, PBL, rain, cloud fraction, wind, etc.)$

Diurnal cycle: water column & surface RH

 $AOD \cong F(PM2.5_{surface}, PM_{3D}, Optical, RH_{surface}, H_2O_{column}, PBL, rain, cloud fraction, wind, etc.)$

Diurnal cycle: wind & PBL

PM2.5 vs AOD on higher temporal resolution

Observations

- PM2.5 hourly observations
- AOT hourly observations

- Paired Sites: USA: GSFC, St. Louis, Fresno, Houston; Beijing (China)
- Model
 - MERRA-2
 - GEOS-5 7km
- Diurnal cycle
 - PM2.5, AOD, meteorological fields.

How are AOD and PM2.5 correlated within a day?

Example of daytime AERONET AOD and EPA PM2.5 near GSFC

Daily correlation coefficients in Beijing, China, 2015

- For all three years (2014-2016) and two pairs of Beijing sites, 30-40% days AOD and PM2.5 are correlated with R ≥ 0.7 and 25-33% days R < 0 – better correlations than sites in the US
- For AOD-water vapor, 40-60% days they are correlated with $R \ge 0.7$ and 20-25% days R < 0 Comparable the sites in the US

Closer to the large sources, PM2.5 plays more role in AOD changes

GEOS-5 Nature Run, Ganymed Release

What does model say?

Non-hydrostatic 7 km Global Mesoscale Simulation

The GEOS-5 Nature Run (Ganymed Release) is a 2-year global, non-hydrostatic mesoscale simulation for the period June 2005 through May 2007 with a 7 km horizontal resolution. In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, seasalt, sulfate, black and organic carbon), O_3 , CO and CO₂.

This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of

7km, 0.0625° 2005/05-2007/06 30 min Natural run, no assimilation

R/intersection/slope of daily PM2.5 vs AOD 2006-01 R change day-to-day It can be anti-correlated 1.0 ⊟ Correlation 0.5 0.0 -0.5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2 3 5 6 8 4 ≣ Large day-to-day variation Intersection З 2 0 9 10 11 12 13 14 15 19 20 21 1 2 3 4 5 6 8 16 17 18 22 23 24 25 26 27 28 29 30 31 0.010 E

$AOD \cong F(PM2.5_{surface}, PM_{3D}, Optical, RH_{surface}, H_2O_{column}, PBL, rain, cloud fraction, wind, etc.)$

Variables checked

CAPE	CLDTOT	CWP	IWP	LWP	PBLH	
convective available potential energy	onvective cloud vailable fraction		ice water path	liquid water path	PBL height	
PRECTOT	PS	QLML	QV10M	RH	SLP	
total surface precipitation pressure		surface 10 m specific specific humidity humidity		relative humidity	sea level pressure	
T10M TAUTOT		TQI	TQL	TQV	U10M	
10 meter temperature	total cloud optical depth	total precipitable ice water	total precipitable liquid water	total precipitable water vapor	10 meter wind	
U50M	V10M	V50M	W850	Wind10M	Wind50M	
50 meter wind	10 meter wind	50 m wind	Wind @ 850mb	10 meter wind speed	50 meter wind speed	

Regional average around Beijing

Same PM2.5, more total column H_2O vapor, higher AOD

Same AOD: higher PBL →less PM2.5 Same PM2.5: higher PBL →higher AOD

More stagnation \rightarrow more PM2.5

Wind speed is correlated to RH & TQv

Total column Qv vs Surface RH

Total column Qv vs Surface RH

Fresno, summer (dry) Same PM2.5, lower PBL, higher AOD (?)

Fresno, summer (dry) RH plays bigger role in AOD for this case

Conclusion

- AOD is affected by aerosol loading and multiple meteorological conditions
- Within a day, AOD vs PM2.5 correlation change with time and location.
- Near major source regions, relative humidity + H₂O column, PBL height, wind speed, are needed to estimate PM2.5 from AOD.
- In other regions, information on aerosol composition, vertical distribution etc, are required.

Estimate PM2.5 Using Mixed Effects Models

Robert Chatfield¹, Meytar H. Sorek¹ ¹NASA Ames Research Center

Using MAIAC Aerosol Optical Thickness and Water Vapor

Shown is a map of a major smog-aerosol episode in the San Joaquin Valley.

Colors inside the circles show that $PM_{2.5}$ stations are generally close to the mapped values, within rms error.

For the winter, 11/2012-03/2013Area-wide estimation of PM_{2.5}, in µg m⁻³ at 1 km resolution, has ...

rms residual error = 7.3 μ g m⁻³ *and* $R^2 = 0.73$

Limitations:

accuracy of satellite AOT, CWV, also very local effects and peculuarities of the reference method (e.g. response to volatiles)

Mixed effects constrained by many stations

Chatfield and Sorek-Hamer, AWMA 2018 submitted

GEO instruments allow Mixed Effects Models to beconstrained by **observations many times of day** (multiple observations help distinguish "signal" from "noise")

Arrows showing time variation of the predictor and PM2.5 By making a separate calibration each day, the accuracy improves (bottom right) *Why one day?* Meteorology (subsidence, winds, mixing) is often correlated over a day's period, and composition is too.

AERONET estimates of AOT and CWV do have better precision than current MAIAC.

These *Fresno, CA, 2007–2016* estimates have *rms residual error of* ~3 μ g m⁻³ over many years and seasons rather than ~7 seen for MODIS MAIAC for this and (likely) other reasons.

Note the progressive improvement as we estimate mixed depth using CWV, then use daily calibration of sensitivity

Comparing one AERONET at GSFC to one monitor at Beltsville, MD.

Moving from afternoon hours comparison shown (fully mixed PBL) to **all** hours of observation, ... still remarkably good results. i.e, 0.63 (AOT) -> 0.69 (Ratio) -> 0.82 (fitted) (Why? There should be layers not mixing to surface.)

Limitations of multiple observations per day

As we have seen, there is variation during the day, especially RH and very local processes adding new particles to several-day loadings.

A definition of "homogenous region" is needed to make maps for each part of the country.

Benefits:

Although detailed GEO imagery may not (yet!) improve our desired within-day estimation of $PM_{2.5}$ variation, the additional observations may still help distinguish signal from noise day to day.

TEMPO CWV will aid in these regions;

For *these* regions, there is a *correlated history* of water input and then particle (precursor) input, with correlated mixing patterns. *Not always true:* in those cases, use whole meteorological PBL cycle carefully.

GSFC / Beltsville, MD, 2007–2016

also provides good relationships, although we know not all aerosol layers mix to the surface. (Need to understand theory.)

(Colors of points help allow us to identify the year and date of observation.) Changes during one day are not obvious.

Sample of Current Research Around the World

180° 140° 100° 40°W 20° 0° 20° 60°E 100° 140° 180°										
			%		R ²	% CEAN	- 902		1	
			Precision				\mathbf{R}^2	%		
	Van Donkelaar et al.	0.69	15%	oggia et al. (2016)	0.72			Precision		
201	(2015)					Ma et al. (2016)	0.7	28%	1.1	
40	Kloog et al. (2014)	0.88	21%	t al. (2015)	0.72				N	
20*		0.00	010/			Li et al. (2015)	0.8	20%		
	Chudnovsky et al.	0.92	21%	amer et al. (2015)	0.45	Sai Suman et al.	0.77	NA	20°	
	(2012)					(2014)				
0"	Lee et al. (2011)	0.92	20%				Martin .	0.0		
		5	(SOUTH)		Pr S	Y I N	Cheffeller Cheffeller	STEN.	4	
201	7. J. S. S. J.		AMERICA		68	1NDIAN	N	29 1 -	1200	
	1.1.1.1		125	SOUTH	18-3	OCEAN	Q (OCEANIA		
	SOUT	H	11-51	ATLANTIC	$; \psi$	1 1 1 1	4-1	1 Non		
40'S PACIFIC AL OCEAN 0					0 2,000 mi		0/0/10	.9		
	OCEA	184	1. 1	0 2.000 km						
	60°	1	Sal 1		Lak	only famper from		60*		
ANTARCTICA ROT										
180° 140° 100° 60°W 20° 0° 20° 60°E 100° 140° 180°										
									HEADERS	

Sorek-Hamer, HAQAST 2018