

David J. Diner Jet Propulsion Laboratory, California Institute of Technology

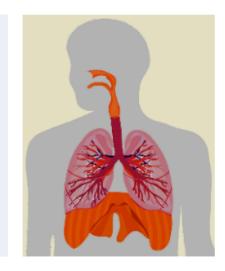
and the MAIA Team

Multi-Angle Imager for Aerosols (MAIA)

4 May 2018

CEOS AC-VC meeting

© 2018 California Institute of Technology. Government sponsorship acknowledged.

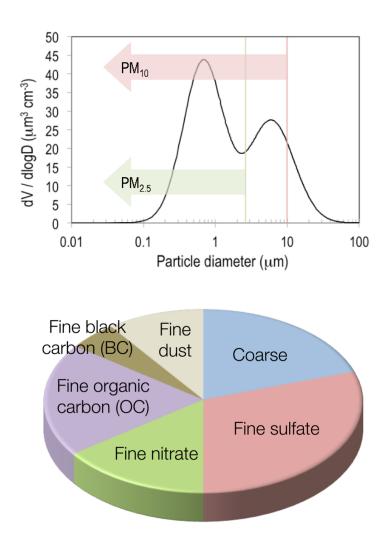

The decision to implement MAIA will not be finalized until NASA's completion of the National Environmental Policy Act (NEPA) process. This document is being made available for information purposes only.

Aerosol impacts on human health

Airborne particulate matter (PM) is a well-known cause of cardiovascular disease and mortality.

> 4 million premature deaths per year

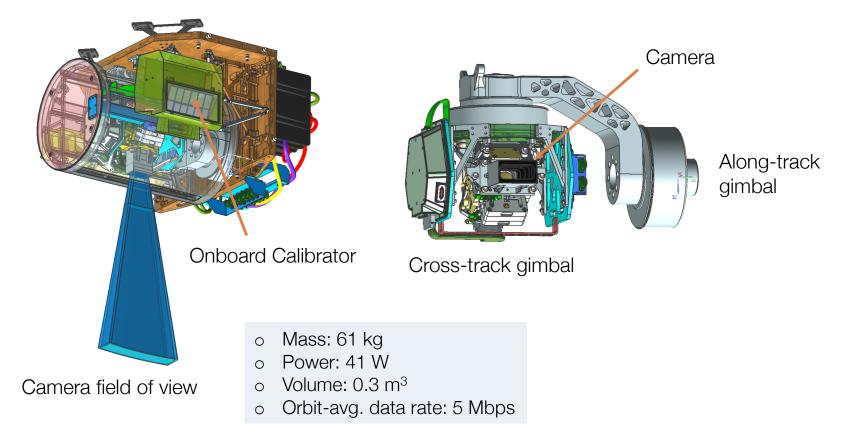
PM has also been associated with respiratory disease, lung cancer, low birth weight, and other adverse health outcomes.



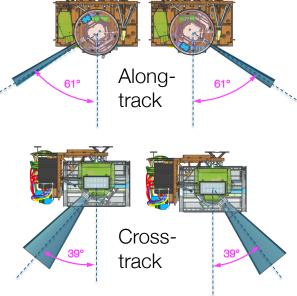
The relative toxicity of specific PM types is not well understood.

PM "type" refers to the fractional proportions of coarse particles, fine particles, and fine particle physical and chemical components.

"The use of central fixed-site monitors to represent population exposure is a key factor limiting our knowledge as to which PM types pose the greatest health risks." — US EPA (2013)

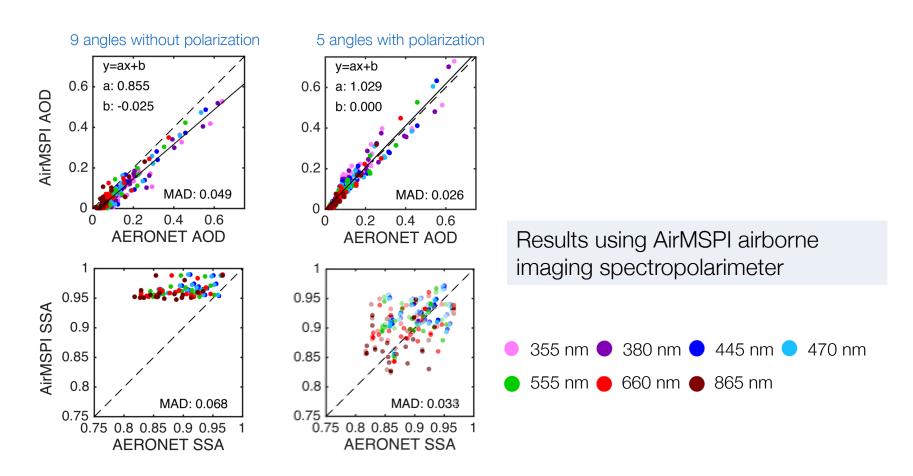

The Multi-Angle Imager for Aerosols (MAIA) satellite investigation was selected in March 2016 as part of NASA's Earth Venture Instrument program.

MAIA's primary objective is to assess the impacts of different size and compositional mixtures of airborne particulate matter (PM) on human health.


MAIA instrument

UV-VNIR-SWIR spectropolarimetric camera on a 2-axis gimbal
 Launch ~2021 on a commercial spacecraft (3 yr nominal mission)

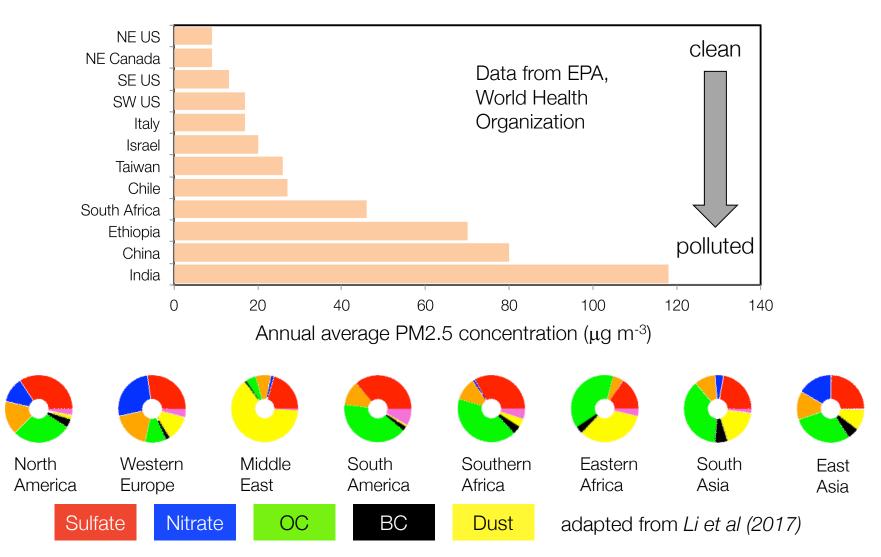
MAIA observing characteristics


- Along-track multiangle viewing to $\pm 70^{\circ}$ at Earth
- Cross-track pointing for target observations
 ≥3x/week
- Globally distributed 200 km x 350 km targets
- Resolution ~200 m (nadir) to ~1 km (oblique)

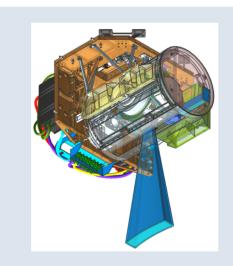
 \circ 14 bands, 3 polarimetric, O₂ and H₂O absorption

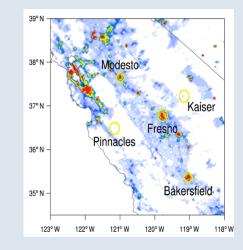
Band (nm)	367	389	415	445	551	645	749	762.5	864	943	1039	1607	1880	2124
Polarimetric														

AOD and SSA retrieval


Xu et al. (2017)

MAIA investigation is target based


- Primary Target Areas (PTAs) are chosen by the MAIA Science Team for conducting epidemiological studies.
- Secondary Target Areas (STAs) are designated for addressing secondary science objectives (e.g., aerosol source regions, climatically important cloud regimes).
- Calibration/Validation Target Areas (CVTAs) are observed for radiometric and polarimetric calibration, and aerosol/PM validation,



PM concentrations and types in the PTAs

MAIA integrates multiple data sources

MAIA instrument

 Provides calibrated, georectified image data for retrieval of column-integrated aerosol properties over major cities. Chemical transport model (CTM)

- o Constrains the aerosol retrievals.
- Informs column aerosolto-near surface PM regressions.
- Assists in gap-filling of the PM maps.

Surface PM monitors

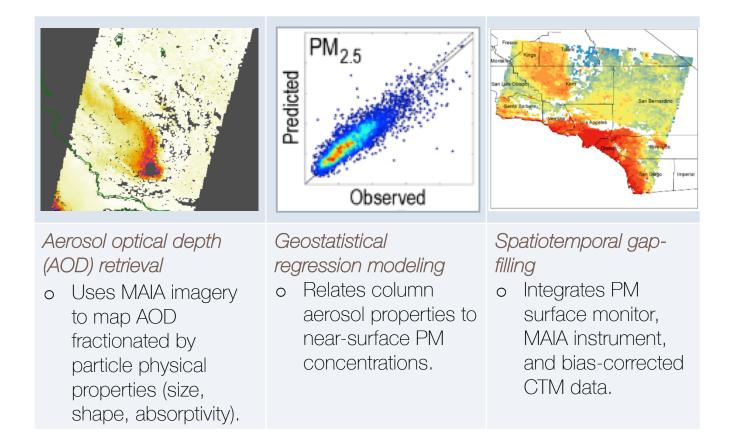

 Used with collocated MAIA instrument data and the CTM to "train" the column aerosol-tonear surface PM regressions.

Image credit: L. Tsutsui, KVPR

MAIA data products

Data level	Description
0	Downlinked instrument telemetry
1	Calibrated and georectified radiance and linear polarization imagery
	View and solar geometry, latitude, longitude
2	Cloud-screened total and fractional aerosol particle properties at time of satellite overpass
	24-hr averaged concentrations of coarse PM, fine PM, and fine PM components on days and locations coincident instrument observations
4	Spatially and temporally gap-filled 24-hr averaged concentrations of daily coarse PM, fine PM, and fine PM components

Processes used for data product generation

Prospective health investigations

Acute (days to weeks) Hospital visits, heart attacks, strokes, premature deaths Subchronic (months) Adverse birth outcomes, pregnancy complications Chronic (years) Cardiovascular and respiratory diseases, cancer

PTA	Representative major cities	Acute	Subchronic	Chronic
NE US	Boston, Providence, Hartford, NYC			
NE Canada	Toronto, Hamilton			
SE US	Atlanta			
SW US	LA, Fresno, Bakersfield, Riverside			
Italy	Rome, Bologna			
Israel	Tel Aviv, Haifa, Jerusalem, Beer Sheba			
Taiwan	Taipei, Taichung, Tainan, Kaohsiung			
Chile	Santiago, Concepción			
South Africa	Johannesburg, Pretoria			
Ethiopia	Addis Ababa, Adama			
China	Beijing			
India	Delhi			

Summary

- The MAIA investigation strategy integrates MAIA instrument observations, PM surface monitor data, and CTM outputs to map size and compositional components of ambient PM.
- Project Preliminary Design Review was completed in April 2018.
- Instrument delivery is planned for April 2020.
- Launch will be on a commercial satellite, earliest mid-2021.

• Epidemiologists on the MAIA team will conduct health impact investigations in the Primary Target Areas.

Thank you

David.J.Diner@jpl.nasa.gov