Air Quality Forecasting Applications of GOES-16 ABI Data

Amy K. Huff

Department of Meteorology and Atmospheric Science

Pennsylvania State University

AC-VC-14

May 4, 2018

Air Quality Forecasting in the U.S.

- State, local, and tribal government agencies issue air quality forecasts to protect the public from the adverse health effects of criteria pollutants
 - NOAA (NWS) does <u>not</u> issue air quality forecasts, but does provide support (numerical air quality model guidance)
- Forecasts typically issued by mid-afternoon (~3 PM), valid for the **next day**
 - Allows for lead time to communicate with public, local governments, businesses, schools
 - Available on state and local websites and AirNow national website (<u>http://www.airnow.gov/</u>)
- Communicated using the color-coded Air Quality Index (AQI)

Air Quality Alerts

- O₃, PM_{2.5}, PM₁₀ are the most commonly forecasted pollutants in the U.S.
- Air Quality Alert (AQA) issued to public on days when forecast for pollutant exceeds National Ambient Air Quality Standard (NAAQS)
 NWS Forecast Office Philadelphia/Mt Holly Weather agy > Mount Holly, NU
- In practice, this translates to a Code
 Orange, Red, Purple, or Maroon
 forecast on the AQI scale
- Public warned to take action to limit their exposure to pollutants
- AQA forecasts are the most important ones to get correct!!

Wildfire Emissions Plumes and Blowing Dust

- Emissions plumes from large wildfires contain:
 - Primary $PM_{2.5}$ and PM_{10} (smoke aerosols)
 - Nitrogen oxides (NO_x) and volatile organic compounds (VOCs): precursors for secondary formation of O_3 and $PM_{2.5}$
- Wildfire emissions plumes can be lofted above the boundary layer and remain relatively intact while traveling long distances, often 100s of km
 - If the wildfire plume mixes to the surface downwind, it can **substantially** increase local O_3 and $PM_{2.5}$
 - Wildfires are becoming larger, more intense, and more frequent
- Blowing dust affects PM₁₀ and PM_{2.5} air quality (dust aerosols)
 - Primarily in arid regions, like the Southwestern U.S. (local sources)
 - Transported Saharan dust periodically affects the Atlantic and Gulf coasts

Forecasting the Impacts of Wildfires and Blowing Dust

- Our typical air quality forecasting methods are not much help with wildfire plumes and blowing dust
 - They are uncommon events, so climatology doesn't work
 - Persistence will always miss the onset day of a fire- or dust-influenced event, but it can help with subsequent days (if it's a multi-day event)
 - Numerical air quality models tend to under-predict because they don't account for wildfire emissions or dust transported from outside of the CONUS

Example: Philadelphia, PA metro area, 2013-2017 NAQFC under-predicts O_3 on days influenced by fires

Fort McMurray Fire Smoke Plume, May 7, 2016

NAQFC (left) under-predicted PM_{2.5} in Midwest associated with smoke from Ft McMurray fire

Satellite Aerosol Products

- Air quality forecasters turn to **aerosol satellite products** to help track wildfire emissions plumes and blowing dust
 - Aerosol optical depth (AOD): quantitative measure of aerosols
 - Smoke/dust mask: qualitative measure of aerosols
 - Dust color imagery (dust RGB): locations, movement of blowing dust
 - GeoColor/true color (RGB): locations, movement of smoke and dust
- Historically, satellite aerosol data had limited usefulness for operations
 - Polar-orbiting satellites: low temporal resolution
 - Observations not available in time for early-afternoon forecasting deadlines
 - Previous generation GOES: low spectral resolution
 - No high-accuracy, multi-channel aerosol products

Example: VIIRS Data

- This is the extent of the VIIRS RGB and AOD available by my forecast deadline (~2 pm)
- Shobha did all she could to increase the latency, but observations are available too late in the afternoon
- VIIRS data are more useful for postanalysis

Advanced Baseline Imager on GOES-R Satellites

- Advanced Baseline Imager (ABI) on GOES-16 (GOES-East) and GOES-17 (soon to be GOES-West) is revolutionizing the forecasting of air quality associated with fires and dust
- ABI has 16 spectral bands vs. 5 on previous GOES imager
 - New products!
 - Higher accuracy and spatial resolution!
- Faster scan rate compared to previous GOES imager
 - More frequent observations!
 - Routine CONUS and full disk views!
- Only 20 min latency!

ABI GeoColor: Dust Storm in Southwest U.S., April 12, 2018

ABI Dust RGB: Dust Storm in Southwest U.S., April 12, 2018

VIIRS RGB

- Most of the event occurred after the VIIRS observation!
- So forecasters couldn't use polarorbiting satellite data to detect and track blowing dust associated with this event!

ABI Smoke Mask: Local Fires in Florida, March 23, 2018

VIIRS RGB and Smoke Mask

- VIIRS captured the smoke event, but it is only a snapshot
- Doesn't show the evolution or growth of the plume like the ABI can!
- And VIIRS was not available in time to inform the forecast!

New NOAA AerosolWatch Website

Access to Near Real-Time ABI and VIIRS Aerosol Imagery for Operational Users

https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/

Plans for 2018

- 2018 ozone season in the Mid-Atlantic is underway; runs May 1 Sept 30
- Pilot study to use ABI AOD, smoke mask, and GeoColor to track transport of plumes from wildfires
 - Fires cause many of the highest magnitude and most widespread (geographically) O_3 events in the Mid-Atlantic
 - But AOD and smoke/dust mask currently $\beta\text{-maturity}$
 - Waiting for provisional maturity products, anticipated soon (June 2018)
 - Fully validated products expected Fall 2018
- GOES-17 currently in its check-out orbit at 89.5 °W
 - Will become GOES-West later this year (~200 days after launch)
 - Lots of fires in Western U.S., Canada!

Acknowledgements

- Support for air quality forecasts:
 - Pennsylvania Department of Environmental Protection
 - Delaware Department of Natural Resources and Environmental Control
- Support for NOAA aerosol products and *AerosolWatch*:
 - Shobha Kondragunta, Hai Zhang, and the NOAA aerosol Cal/Val team
 - NOAA JPSS and GOES-R programs
 - Air Quality Proving Ground
 - Fire and Smoke Initiative