Focus on aerosols and particulates

The PACE mission: New measurements for ocean and atmospheric science: Lorraine A. Remer (UMBC JCET), Emmanuel Boss (U. Maine), Olga Kalashnikova (NASA JPL), Feng Xu (NASA JPL), Anthony Davis (NASA JPL), J. Vanderlei Martins (UMBC), Otto Hasekamp (SRON), Ali Omar (NASA Langley), Maria Tzortziou (CUNY)

Broad spectrum and hyperspectral radiometry (OCI) Multi-angle imaging polarimetry (SPEXone & HARP2)

Broad spectrum and hyperspectral radiometry

OCI (Ocean Color Instrument)

- Wide swath
- 1 km resolution
- Hyperspectral (5 nm resolution)
- UV through the nearIR
- 8 discrete channels in the SWIR.
- Both 2130 and 2250 nm.

For aerosol retrievals... MODIS/VIIRS plus OMI at 1 km resolution.

New aerosol capabilities:

- Aerosol absorption when over ocean.
- Layer height from Oxygen-A band

Mattoo and Remer

Synergistic polarimetric measurements

Co-located imagery from airborne versions of SPEX and HARP flying on the NASA ER-2 Courtesy of J. Vanderlei Martins (UMBC)

PACE will provide better air quality info

- Air quality is one of six identified PACE applications areas
- Enhanced capabilities from all three PACE sensors will better characterize aerosol particles from space
- New characterization includes quantified particle absorption, size, shape and layer height
- At 1-5 km spatial resolution across a broad swath (nearly daily coverage).
- PM derivations from PACE data will be much better constrained than is currently possible from **MODIS or VIIRS**
- PACE encourages collaboration between atmospheric and oceanic communities
- Because most of the world's population lives in coastal areas, better understanding and characterization of the near-shore ocean optical properties possible with PACE will also improve aerosol retrievals near these population centers.
- The PACE applications team (Ali Omar and Maria Tzortziou) have prepared materials addressing PACE's role in air quality.
- https://pace.oceansciences.org/applications.htm

The Plankton, Aerosol, Cloud, ocean Ecosystem Mission

	Key Mission Features	
	Cost	Directed, DTC, \$805M
	Life	3-yr, Class C, 10-yr fuel
	Orbit	676.5 km, Sun sync, 1-pm MLT AN
	Coverage (OCI)	2-day global
	RF Communication	Ka direct to ground, 600Mbps
	Kan Minsing Colores Demui	
)	key mission Science Requirements	
	Ground sample distance of 1 ± 0.1 km ² at nadir	
	Sun glint mitigation (OCI tilt ± 20°)	
	OCI spectral range from (320) 350-865 nm @ 5 nm resolution	
	OCI with 940, 1038, 1250, 1378, 1615, 2130, 2260 nm bands	
	Twice-monthly lunar calibration	
	Onboard solar calibration (daily, monthly, dim)	
	A vicarious calibration system	
iase F	Core data products, uncert	ainties, & a validation program

AirHARP: VIS-NIR, Hyperangular + wide swath

RGB image from instrumentmeasured intensity. Narrow AirSPEX image along center line of wide swath AirHARP.

Corresponding AirHARP of DoLP for the same scene. Note smoke creates pertubation from background Rayleigh signature in the polarization field

Multi-angle polarimetry allows expanded characterization and better accuracy of aerosol and cloud retrievals.

Red line is polarimeter retrieval. Other colors are **AERONET** groundtruth

Absorption retrievals with these wavelengths require polarimetry. Angles alone are insufficient.

All polarimeter retrievals in this section are from AirMSPI, a precursor to the MAIA mission. They are provided by the JPL team: D. Diner, O. Kalashnikova, F. Xu, M. Garay

Two small contributed polarimeters

Spectro-Polarimeter for Planetary Exploration (SPEXone) Contribution from the Netherlands

(SRON, NSO, Airbus; TNO optics) POC: Otto Hasekamp

Hyper Angular Rainbow Polarimeter HARP-2) Contribution from University of Maryland Baltimore County **POC: Vanderlei Martins**

Why polarimetry?