

Balloonsonde Measurements of Volcanic SO, in Costa Rica for Satellite Validation

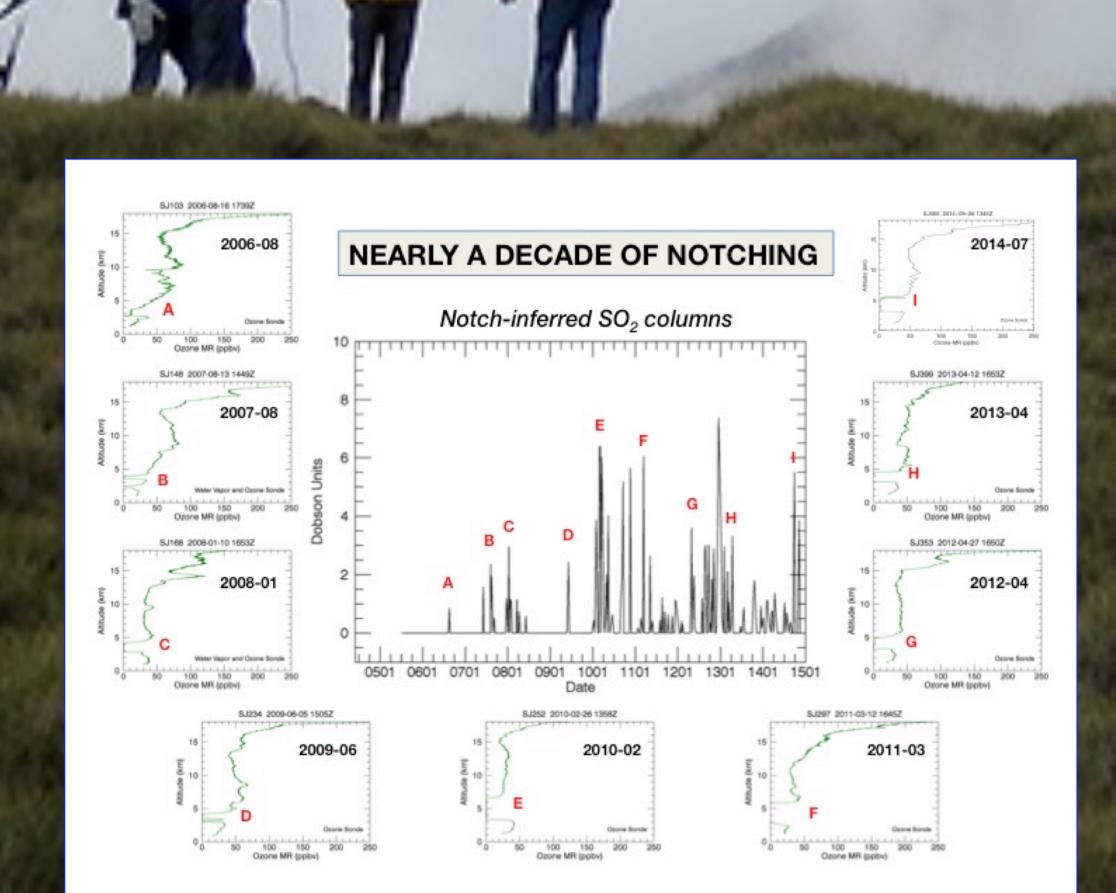
Henry B. Selkirk¹, Gary Morris², Holger Vömel³, Jorge Andrés Diaz⁴, Ernesto Corrales⁴, James Flynn⁵, Nickolay Krotkov⁶, and Can Li⁷ ¹GESTAR-NASA GSFC ²St. Edwards University ³NCAR EOL ⁴Universidad de Costa Rica ⁵University of Houston ⁶NASA GSFC ⁷ESSIC-NASA GSFC

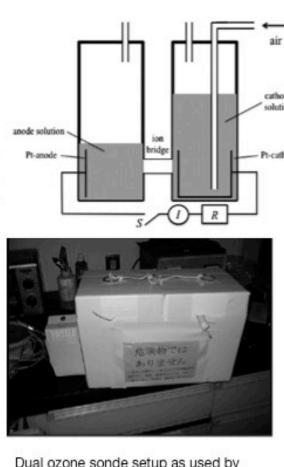
Motivation

Remote sensing of the SO₂ column is very sensitive to its vertical structure, and fresh volcanic SO₂ emissions in particular can be confined to a narrow range of altitudes. In situ profiles of SO, are of great value for validation of satellite retrievals from space-based sensors. Here we describe a unique program of volcanic SO₂ profiling in Costa Rica using dual ozonesondes in tandem with regular ozonesondes downstream from nearby Turrialba Volcano, These soundings have been providing satellite instruments such as OMI, OMPS and nowTROPOMI valuable validation data for SO₂.

Observations of opportunity of volcanic SO₂

Almost from the onset of the Ticosonde balloonsonde program in Costa Rica in 2005, we began to observe notches in the electro-chemical concentration cell (ECC) ozonesondes. Since SO₂ will interfere with the redox reaction in the ECC, we suspected the "notched" profiles were due to plumes of SO₂ emitted from Turrialba. Figure 1 shows notched ozone profiles from each year through 2014 and a time series of tropospheric ozone columns of SO₂ inferred from the assumption $\Delta[SO_2]_{notch} = \Delta[O_3]_{notch}$. Through April 2018, we have found measureable SO₂ in 135 soundings.




Figure 1

Dual ozone sonde SO₂ profiling

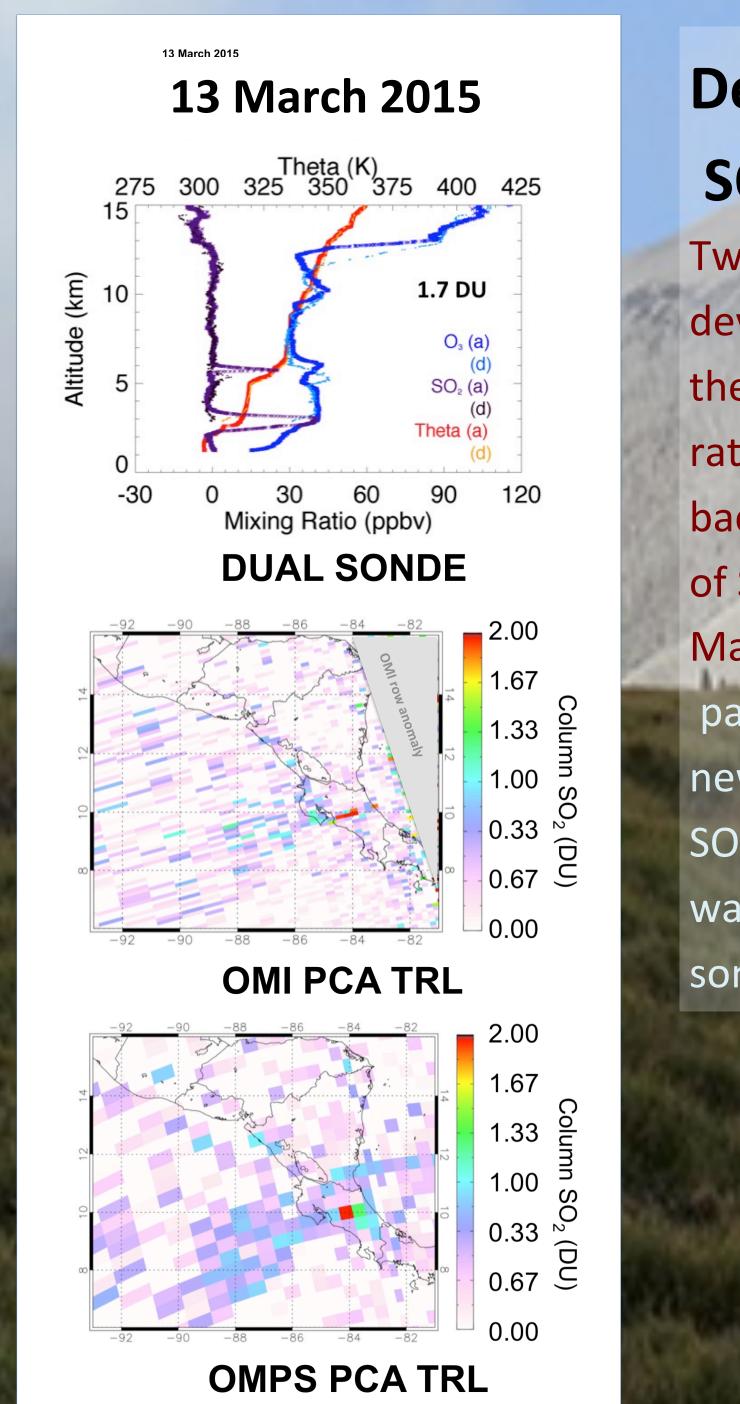
principle of the ECC ozonesonde Ozone flowing through cathode upsets equilbrium between negative iodide ions and molecular iodine. $2KI+O_3+H_2O \rightarrow 2KOH+I_2+O_2$ To re-establish equilibrium, 2 electrons must flow from anode to cathode, viz.,

 $3I^- \rightarrow I_3^- + 2e^-(anode)$ $I_2 + 2e^- \rightarrow 2I^-(cathode)$

Interference by SO₂ SO₂ short-circuits the anode current by reacting with water to yield a sulfate ion and two electrons, viz. $SO_2 + 2H_2O \rightarrow SO_4^2 + 4H^+ + 2e$

SO₂ measurement one with an SO rubber filter on intake, and the second unfiltered. In simple terms (and as long as $[O_3] > [SO_2]),$

measuring SO2 plumes, J. Atmos Ocean. Tech, 27, 1318-1330, do


Figure 2

GMAC- 20 May 2015

Morris et al., 2010. Note SO, filter on BH

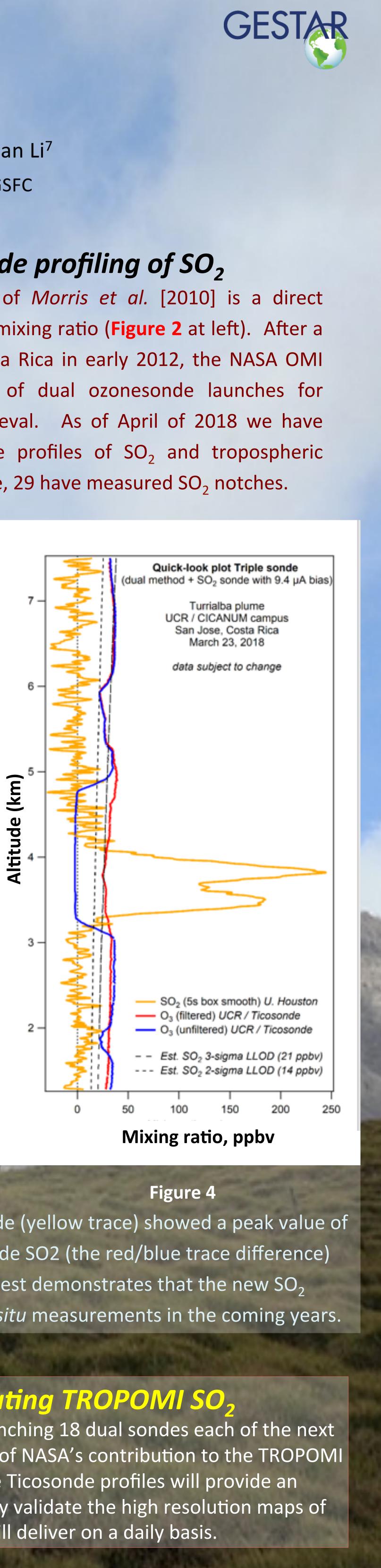
Comparisons with OMI and OMPS SO2 PCA retrievals

In Figure 3 lower tropospheric (TRL) SO₂ retrievals using the Principal Components Analysis (PCA) algorithm for both OMI and OMPS are compared to the column SO₂ derived from the *in situ* dual sonde at San Jose, Costa Rica on 13 March 2015. The agreement between the retrievals and the sonde column on this day is very good. This and comparisons on other dates which we have done show that both OMI and OMPS TRL retrievals are low-biased with respect to our *in situ* column SO₂.

CEOS Atmospheric Composition Virtual Constellation AC-VC-14 Meeting, College Park MD, May 2-4 2018

Dual ozonesonde profiling of SO₂

 $[SO_2] = [O3]_{filtered} - [O3]_{unfiltered}$


Reference: Morris, et al., 2010, A balloon sounding technique for

The dual ozonesonde method of Morris et al. [2010] is a direct approach to measuring the SO₂ mixing ratio (Figure 2 at left). After a successful test sounding in Costa Rica in early 2012, the NASA OMI team has supported a series of dual ozonesonde launches for validation of the OMI SO₂ retrieval. As of April of 2018 we have obtained 48 dual ozone sonde profiles of SO₂ and tropospheric column measurements. Of these, 29 have measured SO₂ notches.

Developing a standalone SO₂ sonde

Two of us (Flynn and Morris) have been developing a new SO₂ sonde that is free of the dual sonde's constraint to SO₂ mixing ratios that are less than or equal to the background ozone. Figure 4 shows profiles of SO₂ and ozone obtained this past

March 23 in Costa Rica with a "triple sonde" payload consisting of a dual sonde and the

new SO₂ sonde. In this instance, the new sonde (yellow trace) showed a peak value of SO₂ approaching 250 ppbv, while the dual sonde SO2 (the red/blue trace difference) was limited to ~30 ppbv. This successful field test demonstrates that the new SO₂ sonde will be a powerful new tool to make in situ measurements in the coming years.

Validating TROPOMI SO,

Ticosonde will be launching 18 dual sondes each of the next two years in support of NASA's contribution to the TROPOMI validation effort. The Ticosonde profiles will provide an excellent opportunitty validate the high resolution maps of SO₂ that TROPOMI will deliver on a daily basis.