

Laura Judd^{1,2}, Jay Al-saadi¹, Brad Pierce³, Scott Janz⁴, Matt Kowalewski^{4,5}, Luke Valin⁶, Jim Szykman⁶, Martin Tiefengraber⁷, Moritz Mueller⁷ oter ²NASA Postdoctoral Program, ³NOAA NESDIS STAR, ⁴NASA Goddard Space Flight Center, ⁵USRA, ⁶EPA ORD, ⁷LuftBlick and University of Innsbruck

Introduction and Data

The GeoTASO hyperspectral mapping spectrometer was deployed aboard the NASA LaRC UC-12 in support of the KORUS-AQ Field Study in South Korea during May-June 2016, the Lake Michigan Ozone Study (LMOS) between May 22nd and June 22nd, 2017, and the SARP Program in the Los Angeles (LA) Basin on June 26th and 27th, 2017.

Flight plans playbook for LMOS/SARP 2017

Gapless maps (Rasters) were created by flying parallel flight lines spaced so there were no gaps between adjacent swaths considering the 45° FOV of GeoTASO and the nominal flight altitude of 7-8.5km.

Flight objectives were to map over emission source regions multiple times per day over several days in **urban areas** like Seoul (KORUS-AQ), Chicago (LMOS), and Los Angeles (SARP) including point sources (power plants) along the ozone-polluted western shore of Lake Michigan.

Preflight in Madison, WI during

This poster shows NO₂ raster datasets from a subset of GeoTASO flights to demonstrate how NO₂ signatures appear during diurnal sampling, weekend/weekday sampling, and point source mapping/pollution transport events.

The GeoTASO retrievals from LMOS and SARP are spatially binned to demonstrate how spatial resolution influences mapping of NO₂ features and how GeoTASO compares to Pandora Spectrometers at different spatial scales.

Pandora data is averaged ± 5 min from the GeoTASO overpass. At GeoTASO's nominal resolution, airborne data is averaged within a 750 m radius of the Pandora. At upscaled resolutions, the value is taken for the pixel in which Pandora resides.

and the impact of pixel size on Pandora comparisons

Maps of NO₂ DSCs measured four times on June 9th, 2016 over Seoul, South Korea. Rasters 1 and 3 includes wind vectors averaged through the lowest 500 m agl from the full resolution Global Data Assimilation System (GDAS) at 09:00 LT and 15:00 LT.

In situ NO₂ (ppbv) • 12·

Maps of NO₂ DSCs over Chicago, IL between 08:00-10:00 LT on Sunday, June 18th and Monday, June 19^{th.}. Boundary layer averaged wind vectors from the NAM-CONUS 3-km nest analysis for 09:00 LT are overlaid. Temporally coincident in situ NO₂ profiles from Scientific Aviation occurred offshore from the GeoTASO rasters. These vertical profiles are plotted to the right, as well as the annotated column densities and calculated AMFs.

▲ SARP 50 60x10¹⁵ 20 30 Pandora Tropospheric Column (molecules cm⁻

LMOS

(Above) Scatter plots comparing GeoTASO DSCs to Pandora tropospheric slant columns during LMOS (green) and SARP (orange). Bars $\underbrace{\breve{0}}_{n=0}^{\infty}$ $\underbrace{\breve{0}}_{n=0}^{\infty}$ $\underbrace{\breve{0}}_{n=0}^{\infty}$ $\underbrace{\breve{0}}_{n=0}^{\infty}$ $\underbrace{\r{0}}_{n=0}^{\infty}$ $\underbrace{\r{0}}_{n=0}^{\infty}$ indicate the spatial variability (750 m radius) of GeoTASO and the temporal variability (±5 minutes) of Pandora at the time overpass.

(Right): Scatter plots indicating how the comparison to Pandora changes as GeoTASO is upscaled to the near-nadir areal resolution of TEMPO [3 km x 3 km], TROPOMI [5 km x 5 *km*], and OMI [18 *km* x 18 *km*].

High-resolution Case Study Examples

GeoTASO NO₂ DSC (x10¹⁵ molecules cm⁻²) Coastal Mapping: 14:00-18:00 LT

Maps of GeoTASO DSCs from June 26th, 2017 over the LA Basin at the nominal 750 m x 750 m pixels and scaled to represent the approximate nadir pixel area of TEMPO [3 km x 3 km], TROPOMI [5 km x 5 km], and OMI [18 km x 18 km] to demonstrate how spatial resolution influences resolved spatial features.

Summer 2018 includes participating in the Long Instrument References: Nowlan, C. R., et al. (2016). Nitrogen dioxide observations from the Island Sound Tropospheric Ozone Study (LISTOS), Geostationary Trace gas and Aerosol Sensor Optimization which is a collaborative effort with NASA, EPA, (GeoTASO) airborne instrument: Retrieval algorithm and 2013. during DISCOVER-AQ measurements Texas local/state air quality agencies, and local research doi:10.5194/amt-9-2647-2016 institutions. Leitch, J. W., et al. (2014). The GeoTASO airborne spectrometer Fifteen flight days are planned in the New York City Project. doi:10.111/112.2003/00. Herman, J., et al. (2009). NO₂ column amounts from ground-based /Long Island Sound (LIS) region to map emissions Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. and their transport over LIS and inland, including doi:10.1029/2009JD011848.

temporally coincident measurements with TROPOMI.

Future Validation Strategy: GeoTASO columns can be binned over the area of the footprint of spacebased sensor retrievals. The airborne mappers provide information on the sub-pixel variability to help link the broader satellite footprint to the more local Pandora measurement.

sampled by GeoTASO for consideration

GeoTASO NO₂ DSC (x10¹⁵ molecules cm⁻²)

20.1

Maps of NO₂ DSCs over Los Angeles during the three rasters sampled on June 27th, 2017. Boundary layer averaged wind vectors from the NAM-CONUS 3-km analysis for 09:00 LT (top), 13:00 LT (middle), and 17:00 LT (bottom) are overlaid. Raster 2 and 3 have a white contour indicating the estimated sea breeze front location within the LA Basin.

18 km x 18 km ਨੂ CalTech ontana A Main G ☆ Pico Rivera GeoTASO NO₂ DSC (x10¹⁵ molecules cm⁻²)

Looking Ahead...

Data sources: GeoTASO data publically available after June 2018: https://www-air.larc.nasa.gov/missions/lmos/index.html Pandora: data.pandonia.net

Acknowledgements: Special thanks to the South Coast Air Quality Monitoring District and our colleagues at UCLA and CalTech, Scientific Aviation, Charlie Stanier and students at the University of Iowa, the KORUS-AQ science team, Nader Abuhassan and NASA's Pandora Project, ESA's Pandonia team, NASA SARP 2017 and NSRC, Barry Lefer, and our pilots and flight crew during all field missions.

