

SBUV/OMPS: present and future work

Natalya Kramarova¹, Stacey Frith², P.K. Bhartia¹, L.K. Huang², Matthew Deland², David Haffner², Gordon Labow², Richard McPeters¹ and Colin Seftor²

1-NASA Goddard Space Flight Center, Greenbelt, MD, USA; 2-Science Systems and Applications Inc., Lanham, MD, USA

Time series of NASA's BUV nadir instruments

Release 6 MOD SBUV Instrument Coverage

Time series of NASA's BUV nadir instruments

CEOS meeting, May 2-4, 2018, College Park, MD

MOD SBUV ozone time series against Aura MLS

Equatorial crossing time for SBUV instruments

BUV Instrument Orbit Drift History

Diurnal Ozone Variation

__GEOSCCM model

A. Parrish et al., "Diurnal variations of stratospheric ozone measured by ground-based microwave remote sensing at the Mauna Loa NDACC site: measurement validation and GEOSCCM model comparison", ACP, 2014

Diurnal Ozone Variation

Change in sensitivity of SBUV measurements with SZA

Correlation among channels

Correlation of Initial Residuals with layer ozone

CEOS meeting, May 2-4, 2018, College Park, MD

Differences in SZA of SBUV observations, Tropics EQ-5N

Toremovegeophysicalvariabilitywecalculatedifferencesbetweeninitialresidualsforoverlappingpairs of instruments.

Limit to time periods when SZA are within +/-15 degrees

14

CEOS meeting, May 2-4, 2018, College Park, MD

EQ-5N, 274 nm

NASA

Future plans: Ascending vs Descending comparison

-Around summer solstice SBUV instruments make measurements at ascending and descending parts of the orbit.

-Comparison of ascending and descending retrievals can help to check calibrations.

Future plans: Ascending vs Descending comparison

-Around summer solstice SBUV instruments make measurements at ascending and descending parts of the orbit.

-Comparison of ascending and descending retrievals can help to check calibrations.

Future plans

- ✓ Diurnal cycle: analysis of observations (MLS, SMILES, SABER and MLO) in combination with the CCM model to derive a diurnal cycle;
- ✓ Estimate responses at each SBUV channel on the diurnal cycle with TOMRAD;
- ✓ Estimate effects of changes in weighting functions due to SZA on ozone retrievals;
- ✓ Reduce sensitivity to the calibration errors by reducing vertical resolution;
- ✓ Cross calibrate SNPP with the SBUV record

Backup slides

CEOS meeting, May 2-4, 2018, College Park, MD

IRes [%]

