CEOS AC-VC, College Park, MD, May. 2nd-4th, 2018 GEMS Mission Overview and Status

TEMPO (hourly) Tropospheric Emissions: Monitoring of Pollution

Sentinel-4 (hourly)

GEMS (hourly) Geostationary Environmental Monitoring Spectrometer

Sentinel-5P (once per day)

GaoFen-5 (once per day)

Equat

Image Credit, NASA

Jhoon Kim¹, P.I., GEMS,

GEMS Science Team ¹ Yonsei Univ, Seoul, Korea,

GK-2 Payloads

(Courtesy, KARI)

GEMS Instrument Flight Model

- Step-and-stare UV-Vis imaging spectrometer scanning at least 8/day in 30 min
- Daily solar and dark calibration
- ✓ Pre Shipment Review(PSR) finished in Jan. 26th, 2018, delivered to KARI in Feb., 2018
- ✓ GEMS launch window : Sep 2019 Feb 2020

←Thermal panel and CMA Installation

> Optical → Alignment for Spatial Test

(Courtesy, KARI / BATC)

GEMS Products (16)

Product	Importanc e	Min (cm ⁻²)	Max (cm ⁻²)	Nominal (cm ⁻²)	Accurac y	Window(nm)	Spat Resol (km ²)@Seo ul	SZA (deg)	Algo- rithm
NO ₂	O3 precursor	3x10 ¹³	1x10 ¹⁷	1x10 ¹⁴	1x10 ¹⁵ cm ⁻²	425-450	7 x 8 x 2 pixels	< 70	DOAS
SO ₂	Aerosol precursor Volcano	6x10 ⁸	1x10 ¹⁷	6x10 ¹⁴	1x10 ¹⁶ cm ⁻²	310-330	7 x 8 x 4 pixels x 3 hours	< 50 (60*)	DOAS PCA
нсно	VOC proxy	1x10 ¹⁵	3x10 ¹⁶	3x10 ¹⁵	1x10 ¹⁶ cm ⁻²	327-357	7 x 8 x 4 pixels	< 50 (60*)	DF
СНОСНО					1x10 ¹⁶ cm ⁻²	437-452	7 x 8 x 4 px	< 50	
TropLO3 TropUO3 StratO3 TotalO3	Oxidant Pollutant O ₃ layer	4x10 ¹⁷	2x10 ¹⁸	1x10 ¹⁸	3%(TOz) 5%(Stra) 20(Trop)	300-340	7 x 8	< 70	OE TOMS
AOD AI SSA AEH	Air quality Climate	0 (AOD)	5 (AOD)	0.2 (AOD)	20% or 0.1@ 400nm	300-500	<mark>3.5</mark> x 8	< 70	$\begin{array}{c} Multi-\\ \lambda\\ O_2O_2\end{array}$
[Clouds] ECF CCP	Retrieval Climate	0 (COD)	50 (COD)	17 (COD)		300-500	7 x 8	< 70	O ₂ O ₂ RRS
Surface Property	Environ- ment	0	1	-		300-500	<mark>3.5</mark> x 8	< 70	Multi- λ
UVI	Public health	0	12	-			7 x 8	< 70	

GEMS

OMI mean NO₂ (from 2005 to 2014) over GEMS FOR

Blue = GEMS Full FOR Performance Estimate

Spatial Resolution Comparisons

GEMS Processor

L0-1 Processor

- Developed by BATC & KARI
- Dark correction :
 - fitting by temperature changes needed
- Smear correction :
 - ratio of frame transfer time to integration time, with previous frame effects considered
- Straylight correction :
 - matrix, with 19x19 pixels aggregated due to computing time issue
- Spectral calibration :
 - Reference solar spectrum convolved with GEMS bandpass functions, polynomial equation
- Onboard LED calibration :
 - for linearity, gain and PRNU(TBD)
- Polarization correction :
 - VLIDORT, Linear polarization sensitivity tests, LUT in collaboration with TEMPO team

GEMS Bandpass

GEMS Straylight

- Spectral Spike
 - Compare to Spatial Line Spread Function, there are lots of spikes at Spectral Line Spread Function

Polarization Factor

- Polarization factors are shown below for the characterization dataset provided by BATC.
- Instrument polarization modeling is required to scale the ground test measured results to the range of GEMS on-orbit scan mirror angles.

GEMS L2 Processor Interface : Daytime

GEMS L2 Processor Interface : Night time

Examples of retrieved products using OMI L1b

350

ECF

HCHO

AEH

Terrain height

ССР

СНОСНО

Intercomparison

Jhoon Kim (Yonsei U) – Aerosol Y.S. Choi (EWU) - Cloud Jae H. Kim (Busan NU) – O_3 Hanlim Lee (Pukyung NU) - NO_2 , SO_2 Rokjin Park (SNU) – HCHO, CHOCHO K.H. Lee (GWNU) – Sfc prod M.H. Ahn (EWU) - calibration

Product accuracy evaluation

2017.12	Correlation coefficient (R)	a, Slope	b, Intercept	RMSE	Error (%)	6) Reference	
O_3 (Total)	0.97	0.955	5.4 DU	2.35%	-	Brewer Spectro- photometer	
O ₃ (Trop)	0.79	0.89	1.91 DU	6.48 DU (10-20%) 2 DU (7.29%)		Ozonesonde	
НСНО	0.86~0.88 (MAM/JJA/SON) 0.61 (DJF)	0.96 – 1.07	-1.4-3.1 x 10 ¹⁵	-	-	OMI Products	
NO ₂	0.90~0.98	1.07~1.2	-0.99-1.22 x 10 ¹⁵ cm	N/A	-	OMI Products	
SO ₂	0.98 0.66 (<1 DU) 0.72 (<3 DU)	0.4 0.89 0.81	0.06 DU 0.1 DU 0.06 DU	N/A	53.5 % - -	OMI Products Airborne	
ECF	0.99	1.0	0.03	0.03~0.0 5	N/A	OMI Products	
CCP	0.89	0.97	-30	95	N/A	OMI Products	
Surface Refl	08.00	N/A	N/A	<0.1	<40%	OMI Products	
(BRDF)	0.0~0.9					MODIS BRDF	
AOD	0.84	0.78	N/A	T/V	Q-value : 53.44%	AERONET	

GEMS Algorithm Test using TROPOMI L1b Data (Nov 29, 2017)

TROPOMI UVAI

OMAERUV SSA

OMAERUV AOD

GEMS Algorithm Test using TROPOMI L1b Data

Level 2 algorithm test with simulated radiance - 2007.09.15 04 UTC -

Simulated TO3 (DU)

40

30

Latitude N

10

80

100

Longitude

120

140

Simulated AOD

Tropospheric O3 (DU)

Retrieved HCHO

Wavelength Shift

Algorithm test using GEO-TASO

Validation of GEO-TASO with PANDORA

GEMS Ground Station at NIER

- Building to be completed soon
- Receiving and processing system to be installed by 2018

Summary

- GEMS flight model has been delivered to KARI after PSR on Jan 26th, 2018. The launch window for GEMS is Sep. 2019– Feb. 2020.
- First version of L0-1 algorithms are delivered but lack of correction for straylight, polarization, spectral calibration etc. which needs further im provements.
- L1b-2 algorithm for gases and aerosols show reasonable performances, but requires persistent improvement, including polarization, hourly retrieval in AMF, S/T separation etc.
- Preflight test results to characterize stray light, polarization, spectral accuracy, diffuser BTDF, dark current etc. can provide more accurate analysis on the GEMS performance and L2 algorithm.
- Synergy with AMI and GOCI-2 will provide more reliable products of aerosol and cloud products, which eventually improve the accuracy of trace gas column density.

GEMS at KARI, finally !

