

EUMETSAT Contribution to the Sentinel Missions

Rosemary Munro

EUMETSAT Mission Planning

2 CEOS AC-VC #14, 2 – 4 May 2018, NOAA, College Park, Maryland

EUMETSAT

Motivation – Operational AC User Communities

- The Copernicus Atmosphere Monitoring Service (CAMS)
- The Numerical Weather Prediction Community and the Meteorological Services
- National Environment Agencies & Regulatory Bodies for Air Quality
- Intergovernmental Organisations
- WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS)
- Volcanic Ash Advisory Centers (VAACs)
- The Copernicus Climate Change Service and the Climate Community

Instruments and Products – Trace Gases & GHG

Metop GOME-2 (Radiance, Irradiance, O3, NO2, SO2, HCHO, BrO, UV Index, H2O, surface reflectance, SIF) Metop IASI (Radiance, CO, SO2, O3, HNO3, NH3, CH4)

> MTG UVN (S4) (Radiance, Irradiance, O3, NO2, SO2, HCHO, CHOCHO, surface reflectance) MTG IRS (Radiance, *CO, O3*)

> > EPS-SG UVNS (S5) (Radiance, Irradiance, O3, NO2, SO2, HCHO, CHOCHO, surface reflectance, surface UV, CH4, CO)

EPS-SG IASI-NG (Radiance, CO, SO2, O3, HNO3, NH3, CH4)

Copernicus-CO2 (Radiance, Irradiance, CO2, CH4, SIF, NO2)

MTG-S UVN Sentinel-4 UV-NIR Hyper Spectral Instrument from Geostationary Orbit

- Sentinel-4 has heritage from the GOME/SCIAMACHY/GOME-2/OMI series of instruments
- Primary focus is the monitoring of air quality in the European domain with high spatial and temporal resolution

Figure 9-2: Possible UVN scanning scheme

- The spatial resolution will be ~ 8 x 8 km with hourly temporal resolution
- Sentinel-4 level 1 and 2 products will be produced operationally by EUMETSAT
- Products: O3, NO2, SO2, HCHO, (CHOCHO), UV, AAI, AOD, ALH, FCI support, CLD, HSC, SUR

An example of a single scan line is provided in Figure 4-13.

MTG-I Imaging Mission

- Imagery mission implemented by two MTG-I satellites
- Full disc imagery every 10 minutes in 16 bands
- Fast imagery of Europe every2.5 minutes
- New Lightning Imager (LI)
- Start of operations in 2021
- Operational exploitation: 2021-2042

MTG-S Sounding Mission

- 3D weather cube: temperature, water vapour, O3, every 30 minutes over Europe
- Air quality monitoring and atmospheric chemistry in synergy with Copernicus Sentinel-4 instrument
- Start of operations in 2023
- Operational exploitation: 2023-2042

Meteosat Third Generation (MTG) Full Operational Configuration

MTG-S Sounding Service MTG-I Full Scan Service

4D Weather Cube with MTG-I and MTG-S

Information Content of the IRS Spectrum

Predict and Follow Rapid Events at Fine Resolution

Importance of spatial and temporal resolution and accuracy of geolocation of observations

Spatial resolution and True Colour RGB

Application: Weather forecasts for public Quicklooks for forecasters

courtesy D. Rosenfeld, Univ. Jerusalem

EUMETSAT retrieval product: Optimal Cloud Analysis (OCA)

/geo/output_data/MEF/MET-9/2011/07/oca/oca_RUN2L_20110725_1130

MTG Improvements: smoke detection

SEVERI (11:00 UTC)

MODIS (09:35 UTC)

26 August 2007

Smoke is transparent in IR ! More solar channels needed !

Smoke from Canadian Fires

ABI Band 01 (VIS0.4)

ABI Band 04 (NIR1.3)

New NIR1.3 band useful for high level Ash / Dust / Smoke

Lightning as Seen from Space

Lightning Monitoring for NWC / VSRF: GOES-R example

April 28-30, 2017

GOES-16 GLM lightning superimposed on GLM background: PRE-OPERATIONAL DATA

EPS-SG

- Continuity of the EUMETSAT Polar System Services beyond 2020
 - Provision of continuous long-term datasets in support of operational meteorological and environmental forecasting and global climate monitoring
- EPS-SG will be part of the NOAA/EUMETSAT Joint Polar System
 - Service in the mid-morning orbit
- EPS-SG will fulfil the European contribution to the WMO Global Observing System (GOS) as concerns the space-based observations from polar orbits
- EPS-SG will rely on international cooperation for the development and on national contributions for key instruments
 - ESA: development of the space segment
 - CNES: development of IASI-NG and Argos-4
 - DLR: development of METimage

EPS-SG benefits to activities of NMSs

Main Payload	Enhanced Capabilities	Innovative Capabilities	Applications Benfitting
High-Resolution Infrared Sounding (IASI-NG)	+75% information in T- profiles +30% in WP-profiles	More trace gases and their vertical profiles	NWP, NWC, AC, CM
Microwave Sounding (MWS)	Enhanced spatial over- sampling	Ice-cloud info in support of water-vapour profiling	NWP, NWC
Radio Occultation Sounding (RO)	Large increase of number of radio-occultations	Tracking of Galileo signals	NWP, CM
Nadir viewing UV/VIS/NIR/SWIR Sounding (Sentinel-5)	Significant increase of spatial resolution	Additional trace gas measurements; CO ₂ being studied	Air Quality, CM, AC
VIS/IR Imaging (METimage)	Better radiometric and spatial resolution	Far more variables measured with higher accuracy	NWC, NWP, CM
Multi-viewing, -channel, - polarisation Imaging (3MI)	New mission	Aerosol parameters	Air Quality, CM, NWC
Scatterometry (SCA)	Higher spatial resolution and coverage	Cross polarisation for higher wind speeds	NWP, NWC
Microwave Imaging (MWI)	New mission	Precipitation observations	NWP, NWC, Hydrology, CM
Ice Cloud Imaging (ICI)	New mission	Cloud microphysics parameters	NWP, NWC, Hydrology, CM

NWP: Numerical Weather Prediction; NWC: Nowcasting; CM: Climate Monitoring; AC: Atmospheric Composition

Space Segment: Two Satellite System

- Satellite-A payload:
 - IASI-NG
 - METimage
 - Sentinel-5
 - 3MI
 - MWS
 - RO
- Satellite-B payload:
 - SCA
 - MWI
 - ICI
 - RO
- Both satellites share the same orbit
 Local time of descending node: 09:30

EPS-SG UVNS SentineI-5 UV-NIR-SWIR Hyper Spectral Instrument from Low-Earth Polar Orbit

- Sentinel-5 will build on the heritage from the GOME/SCIAMACHY/GOME-2/OMI series of instruments and will provide continuity with these instruments
- The spatial resolution will be significantly improved compared to previous missions (~ 7 x 7 km at SSP), which is important to support development of air quality applications
- Sentinel-5 level 1 and 2 products will be produced operationally by EUMETSAT
- Products: O3, NO2, SO2, HCHO, CH4, CO, CHOCHO, UV, AAI, AOD, ALH, CLD, HSC, SUR

EUMETSAT

Hyperspectral Infrared Sounding: IASI-NG

Objectives

- Temperature/humidity profile at high vertical resolution
- Clouds, trace gases $(O_3, CO, CH_4, CO_2,...)$
- Sea/land/ice surface temperature
- Aerosols, Volcanic Ash

Breakthrough

- Doubling of radiometric and spectral resolution of IASI for the benefit of weather forecast and atmospheric composition
 - 75% more information in temperature profiling, particularly PBL
 - 30 % more information in water vapour profiling
 - Quantification of trace gases which are currently only detected
 - Vertical resolution of trace gases instead of columnar amounts only

Optical Imaging: METimage

Objectives

- Hi-res cloud products, incl. microphysics
- Aerosols
- Polar AMVs
- Vegetation, snow, fire
- Sea/ice/land surface temperature
- Support to sounding missions

Implementation

Development of *METimage* by DLR

Key performances

- 20 channels: 0.443 13.345 μm
- absolute calibration: 5% (short-wave)
 0.5 K (long-wave)
- radiometric sensitivity: SNR 60 500 (short-wave) 0.05 – 0.2 K (long-wave)
- spatial sampling: 500 m cross-track scan

cl. microphysics

Breakthrough

- Far more spectral channels than AVHRR for the benefit of measuring more variables
- Higher spatial resolution (500 m):
 - more complete coverage through greater likelihood to measure surface variables in partly cloud conditions
 - Better radiometric resolution for more accurate quantification of many variables

Multi-viewing Multi-channel Multi-polarisation Imaging (3MI)

Objectives of a new mission

- Aerosol optical thickness, particle size, type, height, absorption
- Volcanic Ash
- Cloud phase, height, optical depth
- Surface albedo

Implementation

ESA development

Key performances

- 12 channels: 0.41 2.13 μm
- 3 polarisations: 0°, 60°, -60°
- 14 views
- radiometric bias: 3%
- SNR: 200
- spatial sampling: 4 km
- push-broom scan (2200 km swath)

Breakthrough:

- Enhanced spatial sampling (4 km)
 - Improves separation of cloudy areas
- 12 spectral channels (9 polarised), extending into the UV and SWIR
 - Better aerosol characterisation
- Higher angular resolution (14 views)
 - Better phase function characterisation

Synergy of Observation Missions

Observation missions are highly complementary

- Co-registration of measurements will allow to optimise the information extraction
- Synergy to be considered in payload distribution of a dual satellite configuration

Essential co-registrations

- IASI-NG METimage UVNS/S5
- MWI ICI

Desired co-registrations

- IASI-NG MWS
- METimage 3MI
- IASI-NG UVNS/S5 3MI
- MWI SCA METimage

Aerosol Product Commitments

Metop PMAp (GOME2/AVHRR/IASI) (AOD, Volcanic Ash Flag) Metop GOME-2 (AAI, Absorbing Aerosol Layer Height) Metop IASI (Dust, Volcanic Ash) MSG SEVIRI (*AOD*, Volcanic Ash Flag & Layer Height)

> Sentinel-3 SLSTR (AOD, Angstrom coefficient) Sentinel-3 SLSTR & OLCI (AOD, Angstrom component)

> > MTG UVN (S4) (AAI, Absorbing Aerosol Height) MTG IRS (Volcanic Ash, Dust) MTG FCI (AOD, Volcanic Ash Flag & Layer Height)

> > > EPS-SG 3MI & MAP (AOD, Single Scattering Albedo, Refractive Index, Effective Radius, Aerosol Layer Height, Aerosol Type) EPS-SG UVNS (S5) (AAI, Absorbing Aerosol Layer Height) EPS-SG IASI-NG (Volcanic Ash, Dust) EPS-SG METimage (AOD, Volcanic Ash Flag & Layer Height)

3MI Observation Concept

3MI Multi Viewing Angle Acquisition

Detectors	View 1	View N	View 2N
Wheel		🛃 🏋	
Optical heads			\frown

Channel (Polarisatio n)	Channel centre (channel width)	Channel index k	Optical head	Applications
3MI-2b (Yes)	410 nm (20 nm)	1		Absorbing aerosol and ash cloud monitoring
3MI-3 (Yes)	443 nm (20 nm)	2		Aerosol absorption and height indicators
3MI-4 (Yes)	490 nm (20 nm)	3		Aerosol, surface albedo, cloud reflectance, cloud optical depth
3MI-5 (Yes)	555 nm (20 nm)	4		Surface albedo
3MI-6 (Yes)	670 nm (20 nm)	5	Optical	Aerosol properties
3MI-7 (No)	763 nm (10 nm)	6 (h=1) 7		Cloud and aerosol height
3MI-8 (No)	765 nm (40 nm)			Cloud and aerosol height
3MI-9 (Yes)	865 nm (40 nm)	8		Vegetation, aerosol, clouds, surface features
3MI-9a (No)	910 nm VNIR (20 nm)	9		Water vapour , atmospheric correction
3MI-9a (No)	910 nm SWIR (20 nm)	10		Water vapour , atmospheric correction
3MI-10 (Yes)	1370 nm (40 nm)	11	Optical	Cirrus clouds, water vapour imagery
3MI-11 (Yes)	1650 nm (40 nm)	12 (h=2)		Ground characterisation for aerosol inversion
3MI-12 (Yes)	2130 nm (40 nm)	13		3MI-11 + Cloud microphysics at cloud top, Vegetation, fire (effects)

Towards an EPS-SG Hyper-Instrument 3MI/S5/IASI-NG/VII - MAP

Combining co-locations of VII/Sentinel5/IASI-NG observations with co-registered multiviewing observations (3MI) on 3MI multi-viewing fixed grid.

EPS-SG Platform

Sentinel-5 UV-Vis-SWIR hyper spectral sounder

IASI-NG IR hyper spectral sounder

VII Very high spatial resolution, multi channel imager

3MI Multi-viewing, Multi-polarisation, Multi-channel imager Co-location and coregistration EPS-SG hyper-instrument

0.29 – 15μm 0.5 – 7 km² ~ 19000 channels

Initial product: Multi-sensor Aerosol product (MAP)

- EUMETSAT will Operate a number of Sentinel missions
- EUMETSAT will Monitor and Evolve these products during the operational phase
- The Sentinels will benefit from a Wealth of Data available from operational EUMETAST missions

