GEMS* mission status in ground segment and application (including operation) ***Geostationary Environmental Monitoring Spectrometer Presenter: Ara Cho Environmental Satellite Center** National Institute of Environmental Research, South Korea ara87@korea.kr

Contents

- Current status of GEMS mission
- Products and validation plan
- Application and service plan
- GEMS ground segment
- Summary

Current status of GEMS mission

GEMS Space Segment

- Construction of ground segment
 (Commanding & data downlink)
 - KARI(Daejon, Korea)
 - : S-band TM & TC
 - NIER(Incheon, Korea)
 - : X-band

Data processing and service

GK-2B Satellite

(Geostationary orbit)

- Payloads: GEMS, GOCI-II
- Lifetime > 10years
- Launch : Oct. 2019~2020 (at French Guiana-Kourou)

Roadmap of the GEMS mission

Currently state and plans

- Level2 Algorithms developed for 16 species (~ 2017)
 * Final 24 products will be tested for operation (2018~2019)
- New building and antenna system constructed (~2017)
- GEMS payload delivered to KOREA (Jan, 2018)
- Creating a new department(Environmental Satellite Center) (Apr, 2018)
- Ground systems CDR (Apr, 2018), patch up the issues (May, 2018)
- <Future>
- Installation of operation S/W and H/W (~Dec,2018)
- S/W development for satellite data analysis (2018~2019)
- Development of algorithms for Level3 and Value added products (2018~2020)
- Launching (Oct., 2019~Mar., 2020)
- Data service for the forecaster (2020~) and for the public(2021~)

Creating a new department for GEMS operation

- Environmental Satellite
 Center is a department for
 GEMS operation (Apr, 2018)
- ESC consists of three teams :
 1) Development team
 2) Analysis team
 - 3) Operation team

Fig. Environmental satellite center in NIER

- construction of GEMS ground station was completed for receiving, processing, management, and distribution of data
 - Located in NIER, in Incheon, South Korea
 - Dual Reflector type of 9m Antenna

Role of Environmental Satellite Center

GEMS development team

- Routine Quality Control
- Long-term Monitoring (sensor, ageing, ...)
- Calibration study
- Geophysical validation of products
 - DOAS, Pandora, ...
 - NIER announcement of opportunity call in 2019 to engage experts for the calibration and validation of GEMS
 - select projects and release the validation team, 2019
 - Cal/Val activity and feedback, 2020~
- Maintenance and evolution of Algorithms
 - Manage the updates of : calibration algorithm and tools
 - L1, L2, L3, VAP processor algorithm
 - Quality control tools
 - Validation algorithms

Role of Environmental Satellite Center

Data analysis team

- Analysis of air quality with near real-time satellite data for an air quality forecaster
 - Development of satellite data analysis system
 - Analysis of the distribution of the characteristics of air pollutants from the satellite data, targeting the forecasted materials
- Making a report for the cases of high concentration of air pollutants
 - Study for the contribution rate of air pollutants from overseas
 - Correction of bottom-up emission and analysis of how it was changed compared to the past

Role of Environmental Satellite Center

Operation team

- Operation of GEMS payload
 - Implement observation mission of GEMS
 - Establishment of daily GEMS observation plan
 - Real-time verification to check outlier
 - Products management
- Operation of GEMS ground segment
 - Check any faults of integrated data processing system
 - Management of network and security
- Data service system development
 - Collecting data requirements and feedback to the service system
 - Development and improvement of transmission techniques between GEMS ground segment and the air quality forecasting system
 - Web-site management and data service to the related organization
- International cooperation and sharing data with another country

Products and validation plan

Each level of products

Level1B product

- Definition
 - Calibrated radiance data from 300nm to 500nm with navigation coordinate (not including of resampling)
- Measurement types (TBD)
 - Earth, Working solar diffuser, reference solar diffuser, Dark current, Light Emitting Diode(LED)
- Format : NetCDF
- Data policy(TBD) : service for public in phases
 - First phase: air quality forecaster in NIER (L+8M IOT~)
 - Second phase: public(uploading data after all observation are finished in a day) (L+2Y~)
 GEMS

Each level of products

Level2 product

- Definition
 - Total column density or background products that are retrieved by level2 algorithms
- Products
 - Ozone, Aerosol, NO2, HCHO, SO2, CHOCHO, Cloud, Surface reflection, UVI, ...
- Format : NetCDF
- Data policy(TBD) : service for the public in phases
 - first phase: air quality forecaster in NIER (L+8M IOT~)
 - second phase: public(uploading data after all observation are finished in a day) (L+2Y~)

Optimization of Level2 algorithm

- The prototype of level2 algorithm was developed by algorithm science group(PI: Jhoon Kim) since 2012.
- Optimization of developed programs will be performed from 2018 to 2019.

Each level of products

Level3 products

- Definition
 - Correcting low-quality pixel in Level2 products to improve retrieval accuracy and support more information to nonspecialists with handling satellite data
 - Composing and averaging Level2 products in temporal and spatial with resampling work
- Target : NO2, O3, Aerosol
- **Format:** Binary(TBD)
- Schedule: Plan to undertake development these algorithms in Mar, 2018

Each level of products

Value added products

- Definition
 - Surface information of air pollutants and so on
- **Target :** NO2, O3, Aerosol(PM2.5, PM10)
- Schedule
 - Developed the draft algorithm for PM2.5 retrieval in
 2017 and will improve it
 - Plan to undertake development the other algorithms in 2018

Development of surface concentration

- A draft of PM2.5 retrieval algorithm was developed for extracting fine dust information on the ground, that has significant effect on human body
 - Adopting the MLR(Multi Linear Regression) method
 - Consideration of the relationship between AOD and ground PM, weather conditions, and geographical conditions

Figure: Scatter plots between estimated PM2.5 and observed PM2.5 in South Korea(left) and the spatial distribution in winter over East Asia

Validation plan

- Pre-launch
 - Development and optimization of near real-time validation tools such as comparison with other satellite data (2018~2019)
 - Non real-time validation such as comparison with surface observation data (2018~2019)
 - Installation and test in ground segment system (2019)
 - Confirmation of validation data (2019)
 - Project call to construct validation network in GEMS observation area (2019)
- Post-launch
 - Validation activities after every major re-processing expected to affect the data, in order to verify expected algorithm and data improvement
 - Determination of the quality of new data products
 - Evaluation of mission data against user requirements that may has evolved

Validation plan

• Validation data (surface monitoring, MAX-DOAS, LEO...)

GEMS ground segment

Data flow and Structure

Main concept of ground segment operation

Operational	Explanation		
Concept			
Non-stop Operation	Non-stop Operating ground station for 24hours and 365days Securing stability and non-stop automation through active-active high stability multiplexing Constructing an operation system in emergencies and at all times Establishment of back-up system for each sub system		
Real-time Service	Acquisition in real-time and distribution in near-real-time Distribution within 1 hour after receiving RAW data Improvement of processing efficiency through algorithm parallelization		
Operation	Operating 10 years according to designed duration of GK2B operation		
for 10years	Considering expansion possibilities of hardware, software, network, and new facilities		
Data archive	Archiving all data in main storage, that is received and produced Building storage system that can expand and meet storage requirements		
Back-up system	Constructing back-up system for data reliability		
	Non-stop Operating with rapid substitution in case of failure		
	Establishment of back-up system to meet system operation concept and requirements		
High	Achieving 99% or more operational availability for high-speed processing		
Availability	and customized services with Hot backup system		

Test Operation Plan

Test operation for ground station system before launch

Tasks

- Organically interworking between system modules in ground segments
- Reviewing functionality and appropriateness between operating systems
- Evaluating retrieval algorithms accuracy
- Detail schedule
 - (1st) Evaluating performance of data retrieval algorithms and validation modules (2018.3~2018.12)
 - (2nd) Review of operational plan appropriateness, checking functionality of the integrated operating system and operational process (2018.12 ~ launch)

Test operation for LEOP and IOT after launch(Launch + 8months)

- Tasks
 - System functionality test using actual satellite observation data
 - Fine-tuning algorithms for changes after launch

Application and service plan

The roadmap of GEMS application

GEMS data service plan(TBD)

- Via Landline (web-based service)
- Web-based service system will be constructed for 3years (2018~2020)
- For public, GEMS data will be available in a ESC website every day(TBD)
- For air quality forecaster, data will be serviced every hour
- Target products to service
 - GEMS Level1B(300~500nm, 0.6nm interval, TBD)
 - GEMS Level2 (16 products + more)
 - Scan every hour when sun is rising

SUMMARY

- The Ministry of Environment (National Institute of Environmental Research) is developing a geostationary environment satellite for monitoring air pollutants over East Asia and climate change causing substances at all times.
- Expected products are column density such as O3, NO2, SO4, HCHO, AOD, periodic averaged and gridded data(Level3), and valued added products
- The Environmental Satellite Center for GEMS is created and construction of data processing system is on-schedule, that will be stable and process data rapidly
- In the future, GEMS will be launched in 2019 and perform in orbit test for 8 months. GEMS data will be serviced for public after 2021.
- The GEMS will be used to monitor air pollutants such as long range transport and it will contribute to improvement accuracy of air quality forecasting and emission data with top-down approach.

Thank you

Development plan of LEO GHG satellite

- Organized user requirement of LEO GHG Satellite 2016
- Preparing a report for the feasibility test 2017~2018
- Feasibility test for LEO GHG satellite 2019~2020 (TBD)
- Development of the LEO GHG satellite 2021~ (TBD)
- Launch (TBD)

Nominal daily operations and calibration

- 33 co-adds per mirror position meet SNR and 30 minute scan duration requirements
- 8-12 scans acquired per day, seasonally varying
- 2 Dark calibrations/day
- 1 Solar calibration opportunity per day at all times over the year M

Nominal Daily operations and calibration

In-flight calibration observation plan

Activity	Frequency
Dark Imaging	Twice/day
Working Solar Diffuser Observation	Once/day
Reference Solar Diffuser Observation	Every 6 months
LED Light Source Linearity Sweep	Once/week

Examples of Level2 products using OMI

Credit : Mijin Kim (Yonsei U) – Aerosol Y.S. Choi (EWU) - Cloud Jae H. Kim (Busan NU) – O₃ Hanlim Lee (Pukyung NU) - NO₂ Rokjin Park (SNU) – HCHO, CHOCHO Y.J. Kim (GIST) –SO₂ J.M. Yoo(EWU), M.J. Jeong(GWNU) – Sfc prod M.H. Ahn (EWU) - calibration

GEMS Ground segment in ESC

Currently state and plans

- System requirement Jan. 2016~Jun. 2016
- System Design review
- Preliminary Design Review
- Critical Design Review Apr. 2018
- Delta-Critical Design Review May. 2018
- Construction of data processing room with servers Jun. 2018

Jan, 2017

Mar, 2017

- Realization of operation software Aug. 2018
- First stage of optimization of level2 algorithms Aug. 2018
- Integration test Sep.2018~Dec.2018
- Development of analysis and data service software in draft version Jun 2018~ Jun2019
 Final version Sep 2019~Dec.2020
- Launch Oct.2019~ 2020

GEMS

Plans for LEO GHG satellite

Initiative of LEO GHG Satellite

Summary

- To monitor quantity and emission of greenhouse gas in global scale
- Two sensors will be developed
 - Near infrared hyper-spectrometer
 - Imager for aerosol and cloud correction (optional)
- In a part of the third phase mission of compact advanced satellite in KARI, Korea

Specification(TBD)

classification	specification
Weight / Size	150kg(payload) / 1.6x0.4x0.6(m)
Resolution	2km
Orbit height	705km
Channel	Three bands (0.76, 1.61, 2.06μ m)
Target	CO2, O2

