

Geophysical Validation Needs of the Geostationary Air Quality (GeoAQ) Constellation GEMS + Sentinel-4 + TEMPO Linked together by LEO sensors

Ben Veihelmann AC-VC co-chair Sentinel-4 and -5 Mission Scientist, ESA/ESTEC

CEOS AC-VC Meeting #14, 2-4 May 2018, NOAA, College Park, MD, USA

S GeoAQ Validation Needs Document

Geo-AQ Constellation Goals

- Maximize impact of the missions
- Data access & inter-operability
- Consistency of products
- Traceable data quality
- . . .

GeoAQ Validation Needs Document objective

- Establish inter-mission bias targets
- Identify new validation challenges
- Identify needed validation approaches
- Inventory existing / new reference measurements
- ➔ Feedback welcome
- ➔ Target to finalise before summer 2018

Inter-mission Bias Targets

CE

Product		Uncertainty*			Accuracy* of	Consistency*	Agreed bias
		GEMS	S4	Tempo	method	heritage data	target*
Solar irrad			2-3%		2-4% consistency of ref spectra, direct comparison	2-5%	1-2%
Earth rad			2-3%		2% acc GSICS inter-cal factors	2-5%	2-5%
Reflect.			2-3%		2%	2-5%	2-5%
O ₃	total	3%	3%	3%	1-3%	<1% monthly zonal mean	1%
	strat	5%	-	5%			5%
	trop	20%	25%	10 ppbv			20%
	0-2km	-	-	10 ppbv			
NO ₂	total	1x10 ¹⁵	-	1×10 ¹⁵			1×10 ¹⁵
	trop	-	30%, 1.5×10 ¹⁵	1×10 ¹⁵		1-2×10 ¹⁵ (OMI-SCIA), bias in strat 0.5×10 ¹⁵	1×10 ¹⁵
SO ₂		1x10 ¹⁶	60%, 3×10 ¹⁶	1×10 ¹⁶			1×10 ¹⁶
НСНО		1x10 ¹⁶	50%, 1.5×10 ¹⁶	1×10 ¹⁶			1×10 ¹⁶
СНОСНО			50%, 7×10 ¹⁴	4×10 ¹⁴			4×10 ¹⁴
AOD		20%, 0.1	-	0.05			0.05 @ 440 nm

*) in molec/cm² unless specified otherwise

New Validation Challenges

- Temporal sampling of diurnal cycle
- Horizontal resolution (S5P forerunner)
- Inter-mission consistency without geographic overlap
- Slant viewing and illumination angles
- Directionality of surface and atmosphere
- Geo-location knowledge
- Vertical distribution of constituents
- Near surface ozone (TEMPO)
- Stratospheric NO₂ correction (S4 lack of clean sector)
- High expectations wrt data quality and availability (→ FRM, QA4EO)

GeoAQ Geophysical Validation Needs Document Status

4. Validation Needs

4.1. General

- 4.1.1. Coordination of the Validation Process
- 4.1.2. Continuity
- 4.1.3. New Infrastructure or Approaches

4.2. For Each Mission Individually

- 4.2.1. Level-1b Earth Radiance and Solar Irradiance
- 4.2.2. Level-2 Systematic Long-term Validation
- 4.2.3. Total Trace Gas Columns
- 4.2.4. O₃ Profile
- 4.2.5. Ozone Trend Monitoring
- 4.2.6. NO₂ Diurnal Cycle Observation Capability
- 4.2.7. NO₂ Stratospheric Correction
- 4.2.8. SO₂ volcanic emission events
- 4.2.9. Aerosol Optical Depth
- 4.2.10. Aerosol Layer Height
- 4.2.11. Emission Source estimation

4.3. Inter-mission Consistency

- 4.3.1. Solar irradiance
- 4.3.2. Earth radiance and Reflectance
- 4.3.3. Inter-calibrated Ground-Based Instruments
- 4.3.4. LEO satellites as travelling standard for L2
- 4.3.5. Airborne sensors as travelling standard
- 4.3.6. Stratospheric Ozone Monthly Zonal Means

4.3.7. Mobile ground-based sensors as travelling standard

4.3.8. Cross Validation of Algorithms

4.3.9. Level-2 Constellation Products Based on a Common set of Algorithms

- Approach
- Domain / scenario
- Correlative data
- Auxiliary data

Example: NO₂ Diurnal Cycle Observation Capability

- Biases with diurnal variation: instrument thermal effects, shortcomings in treatment of the vertical NO₂ profile, aerosols, clouds, the surface reflectance and its directionality.
- Demonstrate that diurnal variation is picked up for a) perfect scene knowledge b) for typical in-flight available scene knowledge
- Airborne NO₂ observations with varying illumination and viewing angles? Comprehensive set of correlative and auxiliary data!

Slides from AV-VC#13

Validation Goals in Phases E1/E2

	Commissioning Phase (E1)	Exploitation Phase (E2)	
Level-1b	In-flight Cal Key Data	Maintain data quality	
	 System verification and acceptance Establish data quality 	 Degradation monitoring Anomaly detection Inter-mission consistency 	
Level-2	 Processor verification and acceptance First check data quality 	 Establish data quality Maintain data quality Degradation monitoring Anomaly detection Inter-mission consistency 	

Validation Needs

- Establish and maintain Data Quality
- Validate Diurnal Cycle Observation Capability
- Validate Stratospheric Correction
- Validate Source Estimation
- Verify Inter-Mission Consistency

Validation Needs for NO₂

Establish and maintain data quality

Systematic validation by operational data quality center

- Domain
 - All conditions, full geographic coverage area, all seasons
- Fiducial Reference Measurements
 - Co-located NO₂ measurements
 - o total column (ground based, inter-calibrated network)
 - o profile in lower troposphere (ground based, inter-calibrated instrumentation)
 - Cloud fraction, optical depth, height (ground based and met imagers)
 - Aerosol optical depth, type (ground based, inter-calibrated network)
- Other data
 - Surface albedo (climatology, near-real time satellite product)
 - CTM data (NO₂ field)
 - Stratospheric NO₂! From model, OMPS limb, ..?

Validation Needs for NO₂

Validate Diurnal Cycle Observation Capability Campaign capturing the relevant variations

- Domain
 - Polluted area including sources, limited transport into domain
 - Diurnal evolution of NO2 (sources, processes, transport, sinks)
- Correlative measurements
 - NO₂ with hourly sampling or better
 - o total column: high spatial resolution (~1km), various viewing geometries
 - total column: at selected locations
 - profile: lower troposphere, also stratosphere, at selected locations
 - Cloud fraction, optical depth, height
 - Aerosol optical depth, type
 - Surface reflectance directionality (BRF)
- Auxiliary data
 - CTM data (NO₂ sources, sinks, profiles, related species, ...)
- AC-VC-14, Emission strength (NO/NO2) diurnal variation

Validation Needs for NO₂

Validate Stratospheric Correction Dedicated analysis

- Approaches
 - use of model forecast
 - spatial filtering & interpolation
 - clean sector (not available for S4)
- Domain
 - latitude bands covered by the mission
 - various local times
- Correlative data
 - Stratospheric NO₂! From model, OMPS limb, ..?
 - NO₂ total column

CESS

Validation Needs for NO₂

Validate Source Estimation

Campaign dedicated to higher level product

- Domain
 - Similar as for diurnal cycle
 - Polluted area including sources, clean surrounding
- Correlative Measurements
 - NO₂ column and profile reference measurements in domain
 - Near-simultaneous NO₂ profile on domain boundary
 - Cloud fraction, optical depth, height
 - Aerosol optical depth, type
- Compare

AC-VC-14, 2-4 May 2018

- Inverse modelling of satellite NO₂ data
- Inverse modelling of correlative NO₂ data
- Simplistic estimate using divergence theorem
- Emission estimates

Source $dA = \oint \overrightarrow{Flux} \cdot \overrightarrow{n} \, ds$

Validation Needs for NO₂

Verify Inter-Mission Consistency

Various approaches

- LEO missions used as travelling standard
 - Systematic assessment as part of operational QA
 - Dedicated assessment of sub-sets (e.g. best understood, polluted/background, ...)
- Stationary inter-calibrated instrumentation
 - Systematic assessment as part of long-term QA
 - Dedicated assessments, e.g. best understood sub-set
- Travelling ground-based and airborne instrumentation
 - Link campaigns
 - Inter-compare instrumentation and algorithms
- Direct comparison of similar targets?
- Comparisons with CTM

Validation Needs for Irradiance

Establish and maintain Data Quality

Systematic validation by operational data quality center

- Comparisons
 - measured reference spectra (ground-based, atmosph. corrected)
 - simulated reference spectra (line lists, models)
 - measured spectra from LEO mission
 - measured spectra from GeoAQ missions
- Monitoring of trends and dependencies
- Global Space-Based Inter-Calibration System (GSICS): verify intermission consistency, determine inter-calibration factors

Validation Needs for Radiance and Reflectance

Establish and maintain Data Quality

Systematic validation by operational data quality center

- Comparison with expected signal for known targets
 - bright clouds, dark ocean
 - vicarious calibration targets
 - dark space, moon (S4)
- Monitoring of trends and dependencies
- Inter-comparisons with LEOs used as travelling standard
 - geometry matching
 - bridge goniometry by modelling
- Global Space-Based Inter-Calibration System (GSICS): verify inter-mission consistency, determine inter-calibration factors