

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Hefei Institutes of Physical Science Chinese Academy of Sciences

CEOS-AC-VC-14th, College Park, MD, 2-4 May, 2018.

GaoFen-5 GHG Monitoring Instrument

Mingmin Zou¹, Wei Xiong², Jin Hong², Hailiang Shi², Liangfu Chen¹

zoumm@radi.ac.cn

¹Institute of Remote Sensing and Digital Earth, CAS, Beijing, China ²Hefei Institutes of Physical Science, CAS, Hefei, China

Outline

www.radi cas.cn

GaoFen-5 mission
 ✓ Overview
 ✓ Payloads onboard

GHG Retrieval Method

- ✓Aerosol Scattering
- ✓Cloud detect
- ✓Optimal Estimate

Part1:GaoFen Mission

High-resolution earth observing system, an important component of China sustainable development plan of science and technology from 2006 to 2020.

Space-based

High-altitude

Flight

Space-based: GaoFen series

GaoFen-1

GaoFen-2

GaoFen-3

GaoFen-4

Launch: 2013.4; Polar Orbit; Resolution: 8m/2m Bandpass:0.45~0.89 Swath: 60km Revisit: 4days

Launch: 2014.8; Polar Orbit; Resolution: 4m/2m Bandpass:0.45~0.89 Swath: 45km Revisit: 5days Launch: 2016.8; Polar Orbit; Synthetic Aperture Radar (SAR); Spatial resolution: 1m C Band: 4~6GHz Launch: 2015.12; Geostationary Orbit; Spatial resolution: > VIS-NIR: 50m > MNIR: 400m Swath: 400km Sample interval: 20s

GaoFen-5 to be launched in early May

Orbital Type	Sun synchronous orbit	
Nominal orbital altitude	708.45km	
Dip angle	98.218	
Orbital flat period	98.805min	
Eccentricity ratio	E<0.0001	L
Flight cylinder number every day	14.57	
Orbital intercept	24.731	
Local time of descending node	1:30 pm	

Sensors onboard GaoFen-5	Similar to	
Greenhouse gas Monitoring Instrument (GMI)	GOSAT	V
Directional Polarization Camera (DPC)	Polder/Parasol	
Environment Monitoring Instrument (EMI)	OMI	
Atmospheric Infrared <u>Ultraspectral</u> (AIUS), FTS	ACE-FTS	
Visual and Infrared Multispectral Sensor (VIMS)		
Advanced Hyperspectral Imager (AHSI)		

GMI: main parameters

	technical parameters			
	02	CO ₂	CH ₄	CO ₂
Central wavelength(um)	0. 765	1.575	1. 65	2. 05
Band width(um)	0. 759-0. 769	1. 568–1583	1. 642-1. 658	2. 043-2. 058
Spectral resolution	0. 6cm ⁻¹	0. 6cm ⁻¹ 0. 27cm ⁻¹		
SNR	300@	=30%	250@	=30%
Radiation calibration	5% (relative, ~2%)			
Size	790mm (X) ×690mm (Y) ×575mm (Z)			
Field of view	14. 6mrad IFOV<10. 3km@708km			
Sample	5、7、9-pints			
Observation mode	nadir (mainly)/glint			
Weight	109kg			
Power	120W			
Data transfer rate	30Mpbs			

GMI observing strategy

Glint model

Calibration

A				
		Glint	Spot	NIC.
antes.		L		2
				<u>ck</u>
	1	rour	Nad	
/				

Observation patterns Along track direction km)		Across-track direction (km)	
5	100	212	
7	130	142	
9	130	RA 106	

 Dark target Light Trap
 Bright target Solar irradiance

GMI data acquire and process

SHS: Spatial heterodyne spectroscopy.

GMI: ground calibration

Spectral calibration

Radiance calibration

Spectral resolution test

Full Width at Half Maximum

correction of nonlinearity and inhomogeneity

- pixel(200, 250) nonlinearity correction coefficients 1.8 1.6 coefficients 1.2 ******* 1.0 -0.8 12000 14000 0 2000 4000 6000 8000 10000 DN

GMI: simulation and ground test

DPC: main parameters

Parameters	Specifications		
Channel	433nm~453nm、 480nm~500nm (P) 555nm~575nm、 660nm~680nm (P) 758nm~768nm、 745nm~785nm 845nm~885nm (P) 、 900nm~920nm		
SNR	Better than 500(Land)		
Polarization Analysis	Linear polarization,Three directions:0° 、 60° 、 120°		
FOV	$-50^\circ~{ m \sim}{+}50^\circ$		
Multi-angular Measurements	9 angles along track		
Spatial Resolution	Better than 3.5 km(at nadir)		
Calibration	Better than 5%		
Polarization Calibration	Better than 2%		
Digitalizing Bit	12bits		
Bit Rate	9.45Mbps		

DPC design

Mechanical part

Lens

Testing of electrical interface

Environment simulation and test

DPC: field experiment

1(a) Experiment site

(1b)Original image

(2a)Sky polarization of 670nm

(2b) Polarization difference with CE318

(3a) Sky radiance of 670nm

(3b) Radiance difference with CE318

The comparison results with CE318: Polarization difference <2%, Radiance difference average< 5%.

DPC vs POLDER-3

	POLDER/PARASOL	DPC
Operation Mode	 Frame imaging Wide field of view imaging optical system Polarizer and spectral filters, Acquisition of information of spectral and polarization channels 	The same as the left
Detector	• CCD matrix(242 X 274)	CCD matrix(512 X 512)
 Visible-Near infrared band Three Polarized Channel + 5 Non- polarized Channel 		The same as the left
FOV	• $-50^\circ \sim +50^\circ$	The same as the left
IFOV	• 6 X 7 km	3.29 km

vvvvv.raui.cas.crl

DPC: Proposed L2 products

	Retrieved parameter	Sensor	Temporal Coverage		
	Aerosol				
•	Aerosol optical thickness (AOT)				
•	Angstrom exponent	DBC	1 file/orbit		
•	Backscattering coefficient	DPC			
•	Non-sphericity index				
	Water vapor and clouds				
• • • •	Cloud fraction Cloud thermodynamic phase Cloud optical thickness Cloud oxygen pressure Cloud effective radius Water vapor integrated content	DPC	1 file/orbit		

Part2: Retrieval Method

Challenge: How to account for aerosol scattering?

Correlation between CO2 retrieval and Aerosol Index (AI)

Frequent air pollution events with high aerosol optical depth.

Photon path-length Probability Density Function PPDF: using 4 factors to modify the RTM (Brill.,et al,2007):

$$\tilde{T} = \alpha \cdot T_2 + (1 - \alpha) \cdot T_1 \cdot T_2$$

$$T_{1} = \exp\left[-\left(\frac{1}{\mu} + \frac{1}{\mu_{0}}\right) \cdot (1 + \delta) \cdot \tau_{1}\right]$$
$$T_{2} = \exp\left[-\left(\frac{1}{\mu} + \frac{1}{\mu_{0}}\right) \cdot \tau_{2}\right]$$

How to apply to GHGs band?

applied directly to CO₂ band:

Synchronous retrieval:

Cloud detect

Step 1: using O2-A Band to judge if scattering exist?

Step2: if Step 1 yes, determine aerosol or cloud based on the spectral characteristic of both O2-A Band and 2.0 um Band

Optimal Estimation Algorithm

Observation Y,

Cost function:

 $Y = F(X) + \varepsilon \qquad \qquad J(X') = \left\| Y - F(X') \right\| = \min$

iteration (*Rodgers*,2000), expressed as:

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \left[\mathbf{S}_a^{-1} + \mathbf{K}_i^T \cdot \mathbf{S}_e^{-1} \cdot \mathbf{K}_i \right]^{-1} * \left\{ \mathbf{K}_i^T \cdot \mathbf{S}_e^{-1} [\mathbf{y} - \mathbf{F}(\mathbf{x})] - \mathbf{S}_a^{-1} [\mathbf{x}_i - \mathbf{x}_a] \right\}$$

To stabilize the iteration:

$$X_{i+1} = X_i + \alpha \left[K_i^T \cdot S_e^{-1} \cdot K_i + S_a^{-1} + \gamma \cdot I \right]^{-1} * \left\{ K_i^T \cdot S_e^{-1} [Y - F(X)] - S_a^{-1} [X_i - X_a] \right\}$$

modified damped newton method (MDNM)

Mingmin Zou et al., 2016

Retrieval result

Comparing to GOSAT CO₂ L2 product (2010)

Summary

- GaoFen mission overview and introduction to GMI and DPC onboard GaoFen-5
- PPDF-based method to account for aerosol scattering
- Fast cloud screening method
- GHG retrieval results from GOSAT L1 data

Thanks!

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Add: No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China Tel: 86–10–82178008 Fax: 86–10–82178009 E-mail: office@radi.ac.cn Web: www.radi.cas.cn