

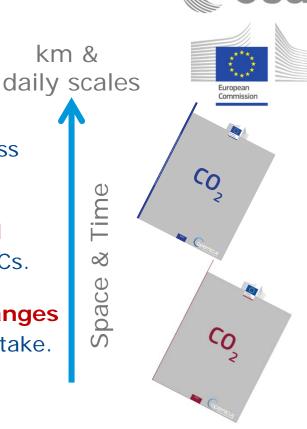
Candidate Copernicus Expansion Mission

End-to-end System requirements to monitor CO₂

1. Detection of emitting hot spots such as megacities or power plants.

2. Monitoring the hot spot emissions to assess emission reductions/increase of the activities.

3. Assessing emission changes against local reduction targets to monitor impacts of the NDCs.

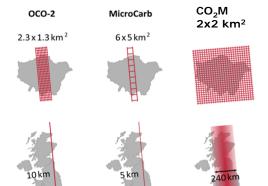

4. Assessing the national emissions and changes

in 5-year time steps to estimate the global stock take.

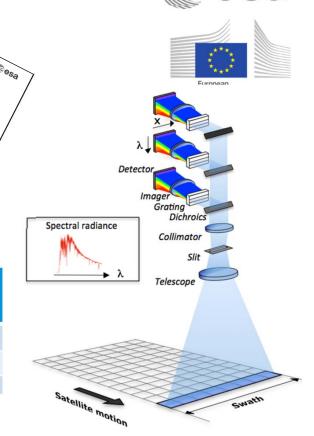
200-400 ton/year

ESA UNCLASSIFIED - For Official Use

Y.J. Meijer | 02/05/2018 | Slide 3


Mission requirements (XCO₂):

• XCO_2 precision: 0.5 – 0.7 ppm


Systematic bias< 0.5 ppm

Spatial resolution 4 km²

- Continuously sampled swath width of > 200 km
- Revisit around 2–3 days (poleward of 40 deg) by constellation of N satellites
- Orbit equator crossing time 11:30 hrs
- Push-broom imaging spectrometer (heritage)

Band	Spectral range [nm]	Resolution [nm]	SNR
NIR	747–773	0.1	300
SWIR-1	1590–1675	0.3	400
SWIR-2	1925–2095	0.55	400

Y.J. Meijer | 02/05/2018 | Slide 4

Auxiliary requirements (NO₂):

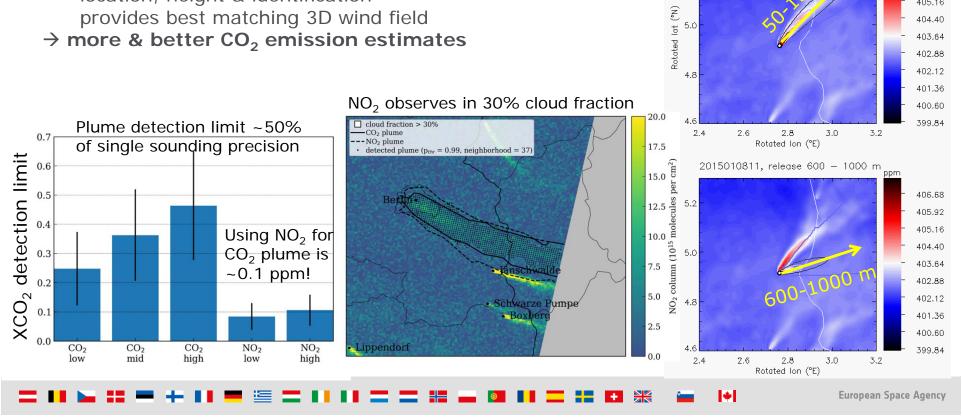
- NO₂ precision: 1–2·10¹⁵ molec/cm²
- After resampling (same as for CO₂):
 - Spatial resolution 4 km²
 - Swath width > 200 km
- Push-broom imaging spectrometer (heritage)
- Trade-off: self standing vs embedded in CO₂ instrument

Band	Spectral range [nm]	Spectral resolution	radiance	
VIS	405–490	0.6 nm	500	
Simulate rise of XC Credits: El	Berlin Patnów	-0.75 plume: -0.50 -0.25 -0.00 -0.25 Credits	Berlin	- 17. - 15. - 12. - 10. - 7.5 - 5.0

India (Tropomi)

Locations of power plants

Credits: WUR, KNMI



Auxiliary requirements (NO₂):

NO₂ plumes enhance CO₂ plume: location, height & identification provides best matching 3D wind field

→ more & better CO₂ emission estimates

2015010811, release 50 - 150 m

406,68

405.92

405.16

404.40

403.64

Spectral

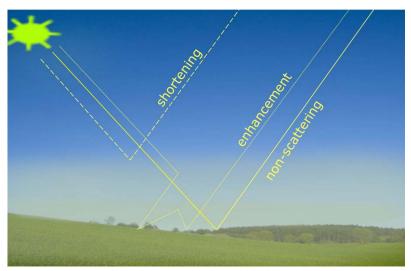
resolution

Auxiliary requirements (aerosol & clouds):

- Multi-angle polarimeter for light path correction
- After resampling (same as for CO₂):
 - Spatial resolution 4 km²

Spectral range

[nm]


- Swath width > 200 km
- Measure degree of linear polarisation (DoLP)
- Observation zenith angle range +/- 60 degrees

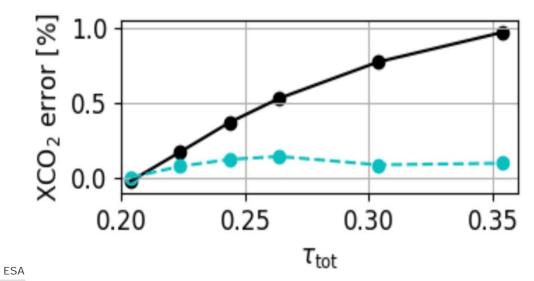
VIS	410–865	0.6 nm	20–40 nm			
1	Multi-angle spectro-polarimetry					
The second secon						

Y.J. Meijer | 02/05/2018 | Slide 7

Band

DoLP spectral

resolution



Auxiliary requirements (aerosol & clouds):

- Multi-angle polarimeter for light path correction
- After resampling (same as for CO₂):
 - Spatial resolution 4 km²
 - Swath width > 200 km
- Measure degree of linear polarisation (DoLP)
- Observation zenith angle range +/- 60 degrees

without MAP with MAP

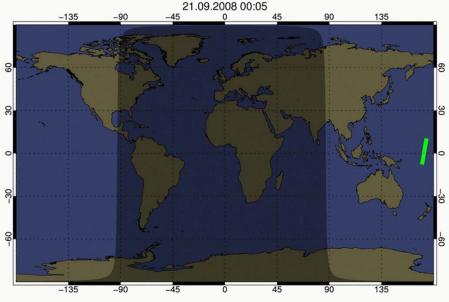
Y.J. Meijer | 02/05/2018 | Slide 8

CO₂ monitoring mission: status & planning

Constellation of 3 satellites is expected with about 250-350 km swath → coverage requirement

Phase A/B1 system studies:

- 03-2018, two parallel studies started
- 01-2019. PRR (Preliminary Requirement Review)
- 07-2019, ISRR (Interm. System Requirement Review)
- Pre-developments continue to end 2019


Mission Advisory Group (MAG):

First meeting planned 12-13 June 2018

Roadmap:

- Budget required at C-MIN19 → end 2019
- Start implementation (Phase B2/C/D/E1) → Q1-2020
- Launch target in 2025-2026

CEOS AC-VC White Paper on GHG is applicable and offers opportunities

Credits: IUP, one-day animation

Y.J. Meijer | 02/05/2018 | Slide 9

ESA UNCLASSIFIED - For Official Use

Virtual Constellation Opportunities

European Union intends to develop a **self-standing**, **robust and operational** monitoring capacity for anthropogenic CO₂ emissions

Complementary elements enhancing this system:

- High accuracy CO₂ lidar measurements → travelling standard
- Additional LEO imager satellites → enhancing observation frequency
- Ground-based cal/val observations in representative areas
- Improving retrieval algorithms & required spectroscopy

Thank you

ESA UNCLASSIFIED - For Official Use

Y.J. Meijer | 02/05/2018 | Slide 10

Backup

ESA UNCLASSIFIED - For Official Use

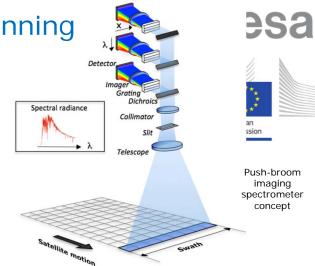
Y.J. Meijer | 02/05/2018 | Slide 11

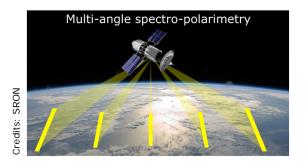
CO₂ monitoring mission concept, status & planning

CO₂ & NO₂: technical concept deploys a push-broom imaging spectrometer (as heritage missions)

Aerosol & clouds: polarimeter measuring degree of linear polarization multiple angles along the flight track

Satellite constellation: to reach the coverage requirement a constellation of **3 satellites** with about 250 km swath is expected


Two parallel **Phase A/B1** system studies: started 03-2018 to mid '19


Mission Advisory Group established with first meeting 06-2018

Start implementation (after confirmation at C-MIN19) → Q1-2020 Launch target in 2025–2026

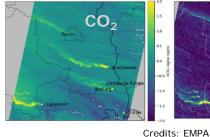
CEOS AC-VC White Paper on GHG is applicable and offers opportunities

Several ESA and H2020 support studies

ESA UNCLASSIFIED - For Official Use

Y.J. Meijer | 02/05/2018 | Slide 12

CO₂ Monitoring Mission Objectives & Requirements


In support of the Paris agreement and required national policies, an anthropogenic CO₂ monitoring & verification support capacity shall allow


- to detect future new hot spots,
- to monitor and assess hot spots,
- to assess emission changes, as expected from the NDCs,
- to assess the emissions trends (change in stocktake with 5 year timesteps)

Observation Requirements (MRD version 1, 04-2018):

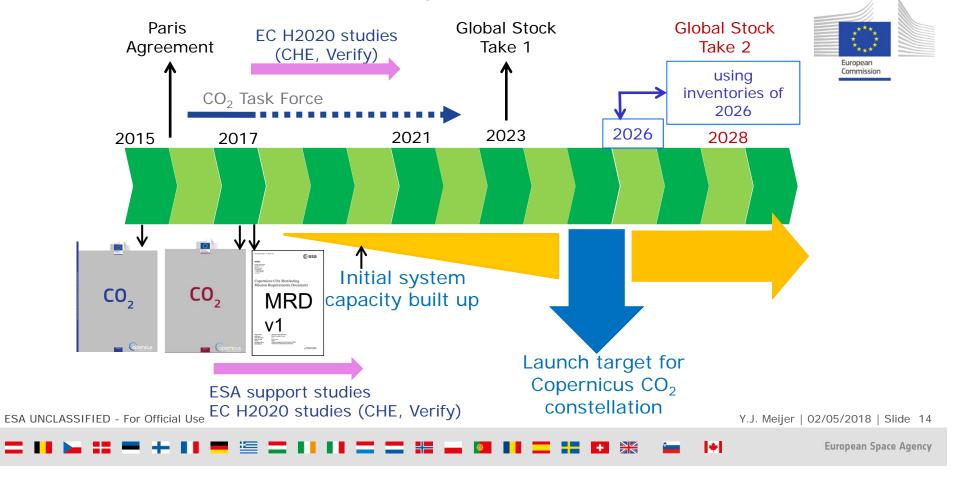
- Spatial resolution 4 km² over swath width of ~250 km
- Revisit of 2-3 days (poleward of 40 deg), equator crossing time 11:30 hrs
- **XCO₂** product with **0.5–0.7 ppm** precision & syst. bias <0.5ppm
- NO₂ product with 1-2·10¹⁵ molec/cm²
- Multi-angle polarimeter (MAP) aerosol & cloud observations

Band	Spectral range	Spectral resolution
VIS	405–490 nm	0.6 nm
NIR	747–773 nm	0.1 nm
SWIR-1	1590–1675 nm	0.3 nm
SWIR-2	1925–2095 nm	0.55 nm
MAP	385–770 nm	20 nm (polarisation)

CO

Y.J. Meijer | 02/05/2018 | Slide 13

ESA UNCLASSIFIED - For Official Use



6

Towards an anthropogenic CO₂ Monitoring & Verification Support Capacity

