Observing methane emissions from space with the next generation of satellite instruments: from global OH monitoring down to individual point sources

Daniel Jacob

with Yuzhong Zhang, Bram Maasakkers, Daniel Varon





Supported by NASA, EDF, and GHGSat, Inc.

## Global OH monitoring has relied on the methylchloroform proxy



Mass balance for methylchloroform:

 $\frac{dm_{MCF}}{dt} = -k[\overline{\text{OH}}] m_{MCF} + \text{minor terms}$ 

But errors on this proxy are large and growing, and assessing OH trends is highly uncertain



Use methane as a proxy instead:

$$\frac{dm_{CH4}}{dt} = \frac{E - k[OH]}{M_{CH4}} + \text{minor terms}$$

Optimize with methane observations from space

#### Distribution of tropospheric methane + OH loss rate (GEOS-Chem model)



Loss pattern has broad meridional and seasonal signatures, distinct from emission signatures in inversions of methane satellite data

Zhang et al. [2018]

# Inversion of 2010-2015 GOSAT methane data shows promise



Analytical inversion using GEOS-Chem forward model with joint Bayesian optimization of

- methane emissions (4°x5°)
- 2010-2015 trends (4°x5°)
- annual global OH concentration



What can we achieve with the next generation of satellite instruments? Conduct OSSE to assess potential for using methane from space as proxy for global OH

- SWIR: TROPOMI, global daily, 3% success rate, 0.6% precision
- TIR: AIRS/CrIS, global 2x/day, 60% success rate, 2% precision



## Ability of satellite methane data to constrain OH and its trend



- SWIR is essential for retrieving global distribution of emissions
- TIR enables better separation of global emissions and OH
- Global emissions and OH concentrations, and their trend, can be separately retrieved

Zhang et al. [2018]

## Retrieving point source emission rates from high-resolution remote sensing of instantaneous methane plumes



Methods for inferring point source rates Q from instantaneous observation of column plume enhancements  $\Delta \Omega$ 



# Define plume size L for cross-sectional flux and IME methods

Pattern recognition algorithm excluding pixels with signal/noise <1



- Axis of plume defines wind direction for cross-sectional flux method;
- Area *A* of plume defines plume size  $L = \sqrt{A}$  for IME method

### Relating effective wind speed to the local 10-m wind speed



In IME method, the plume observations contain some info on wind speed; makes method less sensitive to wind speed error

### What to do in absence of local wind speed data?

Get estimate from operational meteorological data base, but incur representation error

Illustrate with comparison of global GEOS-FP data to 5-min US airport data



### Testing the methods with independent set of LES plumes



### Summary of GHGSat precision in retrieving point source rates *Q* (50x50 m<sup>2</sup> pixels)

|                  | Ir                          | If no local wind            |                              |                                    |
|------------------|-----------------------------|-----------------------------|------------------------------|------------------------------------|
| Method           | 1%                          | 3%                          | 5%                           | data                               |
| IME              | 0.07 t h <sup>-1</sup> + 5% | 0.13 t h <sup>-1</sup> + 7% | 0.17 t h <sup>-1</sup> + 12% | 15-50%                             |
| x-sectional flux | 0.07 t h <sup>-1</sup> + 8% | 0.18 t h <sup>-1</sup> + 8% | 0.26 t h <sup>-1</sup> + 12% | 30-65%                             |
|                  |                             |                             |                              | $7 \rightarrow 2 \text{ m s}^{-1}$ |

- IME method better than x-sectional flux method
- Sources > 0.5 t h<sup>-1</sup> (75% of US GHGRP) can be usefully retrieved
- Lack of local wind data can dominate error at low winds

# Precision of the methods for retrieving point source rates

GHGSat observations for 50x50 m<sup>2</sup> pixels with 1-5% instrument precision

|                  | Ins                         | If no local                 |                              |           |
|------------------|-----------------------------|-----------------------------|------------------------------|-----------|
| Method           | 1%                          | 3%                          | 5%                           | wind data |
| IME              | 0.07 t h <sup>-1</sup> + 5% | 0.13 t h <sup>-1</sup> + 7% | 0.17 t h <sup>-1</sup> + 12% | 15-50%    |
| x-sectional flux | 0.07 t h <sup>-1</sup> + 8% | 0.18 t h <sup>-1</sup> + 8% | 0.26 t h <sup>-1</sup> + 12% | 30-65%    |

- Absolute precision allows detection of sources greater than 0.5 t h<sup>-1</sup> (4 kt year<sup>-1</sup>), which contribute more than 75% of US GHGRP sources
- Low winds are good for source detection but not for source quantification
- IME method is better than x-sectional flux method, esp. in absence of local wind data Next steps:
  - Include inhomogeneous noise in the OSSE
  - Work with GHGSat airborne simulator, other aircraft observations

## Assessing the effect of errors in global OH distribution

OSSEs with 12 different "true" OH distributions from ACCMIP ensemble



• Error in OH distribution can cause 3-7% systematic error in retrieving global OH, but error on retrieving OH trends is much less (previous slide)

Zhang et al. [2018]