AIM-North
The Atmospheric Imaging Mission for Northern Regions

Ray Nassar\(^1\), Dylan B.A. Jones\(^2\), Chris McLinden\(^1\), Chris Sioris\(^1\), Ryan Cooney\(^3\), Helena van Mierlo\(^3\), Natasha Jackson\(^3\), Ralph Girard\(^3\), Joseph Mendonca\(^1\), Feng Deng\(^2\), Saroja Polavarapu\(^1\), C. Thomas McElroy\(^4\), Cristen Adams\(^5\), J.F. Blavier\(^6\), Céline Boisvenue\(^7\), Adam Bourassa\(^8\), Doug Degenstein\(^8\), Guillaume Drolet\(^9\), Louis Garand\(^1\), Markey Johnson\(^10\), Felicia Kolonjari\(^1\), Bruce Kuwahara\(^11\), Randall V. Martin\(^12\), Cameron MacDonald\(^11\), Charles E. Miller\(^6\), Norm O’Neill\(^13\), Aku Riihelä\(^14\), Sebastien Roche\(^2\), Yves Rochon\(^1\), Stanley P. Sander\(^11\), William R. Simpson\(^15\), Gurpreet Singh\(^4\), Kim Strong\(^2\), Johanna Tamminen\(^14\), Alexander Trishchenko\(^7\), Zahra Vaziri\(^4\), Kaley A. Walker\(^2\), and Debra Wunch\(^2\)

\(^1\)Environment and Climate Change Canada, \(^2\)University of Toronto, \(^3\)Canadian Space Agency, \(^4\)York University, \(^5\)Alberta Environment and Parks, \(^6\)Jet Propulsion Laboratory / California Institute of Technology, \(^7\)Natural Resources Canada, \(^8\)University of Saskatchewan, \(^9\)Québec Ministère des Forêts, de la Faune et des Parcs, \(^10\)Health Canada, \(^11\)University of Waterloo, \(^12\)Dalhousie University, \(^13\)Université de Sherbrooke, \(^14\)Finnish Meteorological Institute, \(^15\)University of Alaska at Fairbanks

CEOS AC-VC Meeting, June 10, Tokyo, Japan
• CO₂ and CH₄ fluxes from permafrost, Boreal forests and other northern landscapes for the coming years are highly uncertain

• Increasing anthropogenic activity (transport, resource extraction) in the north is increasing emissions of GHGs

• Better observations would improve future climate projections, support GHG and pollutant emission reporting

• New international LEO and GEO missions are coming, but these will not give sub-daily revisit over high latitudes for monitoring or process studies
Highly Elliptical Orbit (HEO) Possibilities

Can vary orbital period, apogee altitude (~40,000-48,500 km), perigee altitude, inclination, etc.

Background and History

- Polar Communications and Weather (PCW) mission was a HEO concept for Arctic communications and meteorology
- CSA considered additional instruments under the Polar Highly Elliptical Orbit Science (PHEOS) program
- The Weather, Climate and Air quality (WCA) instrument suite was an atmospheric research option that completed Phase 0 & A in 2012, PI: Jack McConnell of York University, who passed away July 2013
- PHEOS-WCA Instruments: Imaging Fourier Transform Spectrometer (IFTS) for TIR to SWIR (~0.25 cm⁻¹) and UV-Vis grating Spectrometer (UVS), combined mass only ~50-85 kg
- CSA has funded IFTS technology development, aiming for sub-orbital testing on a stratospheric balloon in the coming years
- Planned IFTS on MTG-IRS and NASA JPL IFTS studies/technology development: GEO-FTS and IFTS on Mt. Wilson, California
- Mission concept feasibility study involving ECCC, CSA and industry contractors led to AIM-North stand-alone mission
AIM-North is an innovative satellite mission concept that is under consideration by the Canadian Space Agency (CSA). The mission is currently undergoing Phase 0 studies.

AIM-North would provide observations of unprecedented frequency, density and quality for monitoring greenhouse gases (GHGs), air quality (AQ), clouds and solar induced fluorescence (SIF) from vegetation in northern regions. AIM-North would use a constellation of two satellites in a highly elliptical orbit (HEO) configuration, enabling observations over land from about 40-80°N, multiple times per day. Enhancing the mission with additional spectral bands could provide complementary observations for weather, climate and AQ research and operations. The project is a collaborative effort between Environment and Climate Change Canada (ECCC), CSA, other federal and provincial government departments, Canadian academia, Canadian industry and international scientists.
Mission Objectives Document (MOD) with objectives and observing requirements
- ~18-month study with focus on instrument technologies and configuration:
 - Option 1) Imaging Fourier Transform Spectrometer (GHGs) + Dispersive (AQ)
 - Option 2) Dispersive (GHG) + Dispersive (AQ) Instrument
 - Option 3) Combined Dispersive (GHG and AQ)
 - Cloud imager is now baselined to inform pointing decisions

CSA is funding 3 AIM-North science contracts:
- CH\textsubscript{4} and CO Retrievals: U. Toronto (D. Wunch, K. Strong)
- NO\textsubscript{2} and O\textsubscript{3} Retrievals: U. Saskatchewan (D. Degenstein, A. Bourassa)
- CO\textsubscript{2} Observing System Simulation Experiment: U. Toronto (D. Jones, F. Deng)

ECCC science: CO\textsubscript{2} / SIF retrievals, orbits, intelligent pointing, point source estimation

User Requirements Document (URD) soon to be developed by full science team

<table>
<thead>
<tr>
<th>CSA Phase Names</th>
<th>Description</th>
<th>Phase A</th>
<th>Phase B</th>
<th>Phase C</th>
<th>Phase D</th>
<th>Phase E</th>
<th>Phase F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 0 (Pre-Phase A)</td>
<td>Mission Definition</td>
<td>System Definition</td>
<td>Preliminary Design</td>
<td>Detailed Design</td>
<td>Manufacturing, Assembly, Integration, Testing, Launch, Commissioning</td>
<td>Operations</td>
<td>Disposal</td>
</tr>
</tbody>
</table>
AIM-North CO₂, CH₄, CO, SIF Requirements

<table>
<thead>
<tr>
<th>Species</th>
<th>Precision (1σ)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0.25%, ~1 ppm (G), 0.75%, ~3 ppm (T)</td>
<td>0.05%, ~0.2 ppm (G), 0.15%, ~0.6 ppm (T)</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.50%, ~9 ppb (G), 1.50%, ~27 ppb (T)</td>
<td>0.1%, ~2 ppb (G), 0.3%, ~6 ppb (T)</td>
</tr>
<tr>
<td>CO</td>
<td>5% (G), 15% (T)</td>
<td>5% (G), 15% (T)</td>
</tr>
<tr>
<td>SIF</td>
<td>0.30 Wm⁻² sr⁻¹ mm⁻¹ (G), 0.90 Wm⁻² sr⁻¹ mm⁻¹ (T)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

*(G) = Goal, (T) = Threshold

<table>
<thead>
<tr>
<th>Band</th>
<th>FTS Band (nm)</th>
<th>FTS Resolution (nm)*</th>
<th>Dispersive Band (nm)</th>
<th>Dispersive Resolution (nm)</th>
<th>SNR Required (based on FTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>758.0 - 762.3</td>
<td>~0.0174</td>
<td>757.9 - 772.0</td>
<td>0.0474</td>
<td>88 (G), 30 (T)</td>
</tr>
<tr>
<td>CO₂</td>
<td>1598 - 1618</td>
<td>~0.078</td>
<td>1591.5 - 1621.2</td>
<td>0.101</td>
<td>119 (G), 40 (T)</td>
</tr>
<tr>
<td>CO₂</td>
<td>2042 - 2079</td>
<td>~0.127</td>
<td>2045.0 - 2085.0</td>
<td>0.136</td>
<td>116 (G), 40 (T)</td>
</tr>
<tr>
<td>CO & CH₄</td>
<td>2301 - 2380</td>
<td>~0.167</td>
<td>2300.6 - 2345.6</td>
<td>0.153</td>
<td>130 (G), 43 (T)</td>
</tr>
</tbody>
</table>

*Constant FTS spectral sampling of 0.25 cm⁻¹

UV-Vis dispersive instrument for O₃, NO₂, aerosol, BrO, HCHO, SO₂, SIF & more
AIM-North Greenhouse Gas Retrieval Studies

- Preliminary SNR requirements from earlier studies will be updated
- Adapting OCO-2 full physics algorithm to assess AIM-North instrument level requirements to meet CO₂, CH₄, CO, & SIF precision requirements (G/T) for both a grating and IFTS
- Testing retrieval sensitivity to instrumental and geophysical sources of bias
AIM-North Phase 0 IFTS Observing Scenarios

- IFTS would use a step-and-stare approach to scan, but trade space still being explored
- Improved upon mission concept plan with a new baseline detector: faster (up to 14 kHz) but smaller (128x128 pixels), larger pixel pitch, built-in electronics
- 4x4 km² pixels & 20 cm aperture (≤ 150 kg) with ~60-180 second integration time meets SNR requirements (G/T), while smaller 3x3 km² pixels require ≥25 cm aperture
- Plan for intelligent pointing with assistance of a small onboard cloud imager

Potential FOV locations from 95°W apogee with a 128x128 pixel FOV and 4x4 km² pixels (left). NASA MERRA-2 cloud cover for 2015-06-01 17:30 UT and 45 selected FOV positions for a 90 minute period. Satellite and TAP orbit track also shown (center). Over a full month, all northern land (40-80°N) could be observed during cloud free opportunities (right).
AIM-North Intelligent Pointing Example

~70% of Earth covered by cloud at any moment

Real-time cloud data can inform pointing decisions (pioneered by GOSAT-2) to focus on clearest regions

Simulation uses MERRA-2 cloud info every 90 minutes

2 satellites, 16-hr TAP orbit
\(e = 0.50, \ i = 63.435^\circ,\) apogee local noon on July 25

IFTS FOV = 128x128 pixels, ~4x4 km² (sub-satellite but changes with VZA altitude), 45 stares in 90 minutes

Animation by Bruce Kuwahara
Summary and Potential Path Forward

- AIM-North would provide quasi-geostationary observations of CO₂, CH₄, CO, SIF and air quality species over the North

- Phase 0 (Jan 2019 – late 2020) will result in preliminary instrument and system designs in preparation for Phase A and potential decision could follow

- Intelligent pointing strategy could greatly improve the efficiency of the GHG observing concept by use of a small cloud imager

- Could also use cloud data from a full met imager if AIM-North instruments are hosted on a HEO meteorological satellite and early discussions are underway with NOAA and ESA/EUMETSAT on partnership possibilities
Government of Canada Members

- Ray Nassar (Environment and Climate Change Canada) – PI and greenhouse gas (GHG) observations
- Chris McLinden (ECCC) – Air quality (AQ) species observations
- Chris Sioris (ECCC) – Retrievals and Analysis and instrument configuration
- Helena van Mierlo (Canadian Space Agency) – CSA Study Manager
- Ryan Cooney (CSA) – CSA Study Lead
- Ralph Girard (CSA) – CSA Portfolio Manager
- Natasha Jackson (CSA) – Mission Design Engineer
- Marcus Dejmek (CSA) – CSA Science Liaison
- Louis Garand (ECCC) – Potential meteorological enhancements
- Joseph Mendonca (ECCC) – Validation and GHG Retrievals
- Saroja Polavarapu (ECCC) – Modelling and Assimilation for GHGs
- Felicia Kolonjari (ECCC) – Inter-departmental/International collaboration and policy
- Yves Rochon (ECCC) – Modelling and Assimilation for Air Quality
- Alexander Trichtchenko (Natural Resources Canada, Canada Centre for Mapping and Earth Observation) – Orbits
- Céline Boisvenue (Natural Resources Canada, Canadian Forest Service) – SIF observations over forests
- Markey Johnson (Health Canada) – Air quality impacts on health

Canadian Provincial Government Members

- Cristen Adams (Alberta Environment and Parks) – Air quality observations
- Guillaume Drolet (Québec Ministère des Forêts, de la Faune et des Parcs) – SIF observations over forests

University Members

- Tom McElroy (York University) – Pointing, Imaging FTS, sub-orbital testing
- Kaley Walker (University of Toronto) – FTS and Arctic Science
- Debra Wunch (University of Toronto) – GHG retrievals and GHG validation
- Kim Strong (University of Toronto) – GHG retrievals and trace gas validation
- Norm O’Neill (Université de Sherbrooke) – Aerosols
- Dylan Jones (University of Toronto) – Modelling and Assimilation for GHGs and AQ
- Feng Deng (University of Toronto) – Modelling and Assimilation for GHGs
- Randall Martin (Dalhousie University) – Modelling and Assimilation for Air Quality
- Doug Degenstein (University of Saskatchewan) – Air quality gas retrievals
- Adam Bourassa (University of Saskatchewan) – Air quality gas retrievals
- Bruce Kuwahara (University of Waterloo, student) – Orbits and Pointing Strategies
- Cameron MacDonald (University of Waterloo, student) – Orbits and Pointing Strategies
- Sebastien Roche (University of Toronto, student) – CO and CH₄ Retrievals
- Nicholas Lloyd (University of Saskatchewan, student) – Air quality gas retrievals
- Zahra Vaziri (York University, student) – Pointing, Imaging FTS, sub-orbital testing
- Gurpreet Singh (York University, student) – Pointing, Imaging FTS, sub-orbital testing

International Members

- Johanna Tamminen (Finnish Meteorological Institute) – Analysis of GHG and AQ data
- Aku Riihelä (Finnish Meteorological Institute) – Cloud imager and data
- Charles E. Miller (NASA/JPL) – Arctic and Boreal Carbon Cycle Science
- Stanley Sander (NASA/JPL) – Imaging FTS
- Jean-Francois Blavier (NASA/JPL) – Imaging FTS
- William Simpson (University of Alaska at Fairbanks) – Arctic Atmosphere and Carbon Cycle

Industry Team:

- ABB
- AIRBUS DEFENCE & SPACE
- MDA