

Presentation at IWGGMS-15, Sapporo

The MicroCarb Project: recent achievements and review of the project status

CEOS AC-VC-15 Tokyo 10-12 June 2019

Francois BUISSON – MicroCarb project manager

Presented by Claude CAMY-PEYRET (IPSL) – member of the MicroCarb « Groupe Mission » (PI: F.-M. Bréon)

Présentation générale – 20 Octobre 2016

MICR CARB The MicroCarb Project: recent achievements and Review of the project status – CEOS AC-VC 10-12 June 2019

MicroCarb Mission

- Scientific mission \rightarrow global XCO₂ and natural fluxes
- Use of O₂ atmospheric A-band (P_{surf}, aerosols, SIF)
- On ground resolution
 - ♦ 3 simultaneous samples 4.5 x 9 km (@nadir)
 - Exploratory mode: imaging with higher resolution
 2 km x 2 km over limited area (40 km x 40 km)
- Compact instrument . Compatible with microsatellite < 200 kg

- Orbit
 - ◆ SSO 649 km 13h30 LTAN
 - Cycle: 25 days 7 days sub-cycle
- Operations
 - ✦ Launch: 2021
 - Life time: 5 years
- Launch:
 - as an auxiliary payload (Ariane, Vega)

Spectral Performances	B1 (O ₂)	B4 (O ₂)	B2(CO₂)	B3(CO ₂)
Central Wavelength (nm)	763.5	1273.4	1607.9	2037.1
Bandwidth (nm)	10.5	17.6	22.1	28,1
Mean Spectral resolution $(\lambda/\Delta\lambda)$	25 500	25 900	25 800	25 900
SNR @ L _{mean} (per channel)	285	378	344	177

MicroCarb, part of the GHG international constellation for 2021-26 period

Satellite, Instrument (Agencies)	$\rm CO_2 CH_4$	2002		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	202
ENVISAT SCIAMACHY (ESA)	• •																			
GOSAT TANSO-FTS (JAXA-NIES-MOE)	• •																			
OCO-2 (NASA)	• 2																			
GHGSat (Claire)	•																			
TanSAT (CAS-MOST-CMA)	•													1						
Sentinel 5P TROPOMI (ESA)	•																			
Feng Yun 3D GAS (CMA)	• •																			
Gao Fen-5 G MI	• •											-								
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES)	• •													1						
OCO-3 (NASA)	•													_						
Bluefield Technologies	• 1																			
MicroCarb (CNES)UKSA)	•																			
MethaneSAT (EDF)	•																			
MetOp Sentinel-5 series (Copernicus)	•																	1		
Feng Yun 3G (CMA)	• •																			
GEOCARB (NASA)	• •																			
MERLIN (DLR-CNES)	•)																			
TanSat-2 Constellation	• • •																			
GOSAT-3 (JAXA-MOE-NIES)	• •																			
CO2 Sentinel (Copernicus)	• • :																			
			Scien	re			Oner	ationa	4	//////	Exten	ded N	lission		PI:	anned		G	nside	red

Launch 2021 is important

- We expect
- to be in flight with OCO-2 for cross calibration/ validation
- coordinated operations with OCO-3 and GOSAT-2
- Play a part in preparation of global stocktake 2023/2028
- Contribute to preparation of future CO2M (Copernicus)
- Ready to develop collaboration with other agencies to prepare cross-calibration & cross validation campaigns (cf. MAGIC), and support scientific exchange

MICR CARB The MicroCarb Project: recent achievements and Review of the project status – CEOS AC-VC 10-12 June 2019

Organization

MICR CARB The MicroCarb Project: recent achievements and Review of the project status - CEOS AC-VC 10-12 June 2019

Progress

Phase C (detailed design) successfully completed

- Instrument CDR completed (Fall 2018)
- Satellite CDR completed (April 2019)

Now conducting phase D (flight model realization)

- Most of the FM equipment available
- Instrument AIT to be started in the coming weeks
- Platform AIT to be started in the coming weeks

Ground segment

> Wide re-use of existing CNES means and facilities

Processing

- Specific retrieval tool developped 4A RTIC: includes specific solar radiation model, spectroscopy data base, etc
- Performance evaluation being conducted using OCO-2 data
- Industrial development to be started in the coming weeks

On line with a launch 2nd half of 2021

Multiple Observation modes

Routine mode

- Nadir, off-nadir (lateral depointing)
- > Glint
- > Target
- Scan
- > WFOV/IFOV= 15

Calibration mode

- Sun pointing
- Moon pointing
- Night pointing over oceans
- Earth limb pointing

Présentation générale – 20 Octobre 2016

Observation modes

Exploratory mode: City mode

- > Typical footprint: 2 km x 2 km
- > Typical area surface: 40 km x 40 km
- Obtained by slowing down the satellite scrolling + maneuvers + scan activation + binning tuning (on ground) + integration time tuning
- No data acquisition before / after (satellite maneuver)

Dedicated presentations during IWGGMS-15

- \succ "The potential of the XCO₂ high resolution imagery ..." Grégoire Broquet
- Plume detection and characterization from XCO₂ imagery ... " Claude Camy-Peyret

Also applicable at regional scale

Présentation générale – 20 Octobre 2016

BIC+MVP+

Radiateur

Instrument

Description

- Passive SWIR Spectrometer
- Integrated imager (cloud detection): 0.625 μm

Features

- One unique spectrometer (one grating, one detector)
- On board scan mirror (one axis)
- Passive cooling (150 K)
- Calibration: solar port with diffuser, white lamps
- Polarization scrambler
- Capacity for intermediate acquisition (10 Hz) → mitigation of non uniformity of scenes ALT effects (ISRF distortion)
- No processing aboard
- High stability (geometrical, radiometric and spectral): use of SiC material, accurate thermal control (< 0.1 K), electronics</p>

40 cm

Instrument development status

Pointing & calibration System

- Assembly and integration to be started end of June 2019
- Followed by environmental testing
- Then full calibration
- Delivery expected June 2020
- Carried out by Airbus DS Toulouse

3D printed

Instrument calibration. On Ground

Tests performed under thermal vacuum condition

Optical devices

- Tunable laser source
- Wide band source
- Integrating sphere
- Collimator
- Polarizer

Other tests

- Gas cell → characterization in absorption
- Test with heliostat
 - ✦ Different air masses
 - Matador

- Dark signal: offset and stability
- Non linearity
- Absolute and relative gain
- Verification straylight model
- Verification polarization model

Spectral performances

- Dispersion law parameters
- Keystone
- ISRF Shape

Spatial performances

- Acquisition in the 4 bands
- Comparison with EM27
- Detection of defects at instrument or L1 or L2 level

Cross calibration with GOSAT TANSO-FTS-2 (common radiometer: under investigation) MICR CARB The MicroCarb Project: recent achievements and Review of the project status – CEOS AC-VC 10-12 June 2019

MICR CARB The MicroCarb Project: recent achievements and Review of the project status – CEOS AC-VC 10-12 June 2019

....

000 0.000 0000

Satellite AIT

- Assembly and Integration to be started July 2019
- Followed by payload integration
- Then environmental testing
- Delivery expected June 2021
- Carried out by Thales Alenia Space (UK)
 - 12 © cnes

In orbit calibration and validation

Instrument calibration

- Closed shutter
- Dark signal: offset and stability
- White lamp
- Relative radiometric gain
- Keystone

- Sun Pointing Absolute radiometric gain
- Reference solar spectrum Dispersion law parameters

Moon pointing

- Co registration, etc
- Vicarious campaign
- Ground laser pointing

Data validation

- The following is considered
 - Comparison to TCCON station (+ EM 27)
 - Aircore (balloon flight)
 - Instrument on board aircrafts •
 - Comparison to models •
 - Cross validation with other projects (OCO-2, OCO-3, GOSAT, GOSAT-2, Tansat, etc)

13

Data processing

Presentation by Denis Jouglet at IWGGMS-15 Val

Processing tools under development

- Radiative transfer : 4A-OP (by LMD)
- Inversion algorithm: 4A RTIC (optimal estimation)
- Implementation of B4 ongoing
- Spectroscopy data base: based on improved existing GEISA + addition of O₂ @1. 27 μm
- Solar model: based on
 - SOLSPEC (by LATMOS) for the continuum
 - And Toon for solar lines
- Scattering modelization. VLIDORT, SOS

Other products

> SIF, airglow

Validation

- Processing applied to OCO-2 L1 data and comparison to OCO-2 L2
- Step 1: clear sky, nadir: completed
- Step 2: comparison to TCCON, scenes with aerosol, estimation of SIF, glint mode: ongoing
- Results now close to those obtained by ACOS

Data latency

Products will be available within 48 hours in compliance with CAMS (Copernicus) requirements

15) © cnes

MicroCarb main innovations

- ISRF knowledge in heterogeneous scenes
- ✤ L1C with refined geolocation, spectral law and polarization impact
- Intra-FOV information (a few channels) gives access to albedo, ice, NDVI, clouds
- Cloud detection: based on imager and intra-FOV pixels
- 1.27 μm band : better assessment of the aerosols (Angström coefficient), less sensitive to spectroscopy errors, same vertical sensitivity to aerosols as WCO2 + SCO2
- A complete chain of processing for L1 & L2 (& L3) is now specified
- Most critical parts are prototyped
- Testing under going for 4ARTIC, to come for other parts
- Ground segment development starts next september

Format of products : as similar as possible to OCO-2

To ease the use of the MicroCarb data by the community

A SIF product will also be computed by a pre-processor

To be provided by UoL (Hartmut Boesch & Dongxu Yang)

City Mode of MicroCarb

The main priority is the CO₂ natural fluxes

But as a demonstration, a small fraction of the observing time will be devoted to power plants and megacities

- > XCO₂ image of ~ 40 km × 40 km
- Individual pixel size 2 km × 2 km (i.e. 20 × 20 pixels)
- Precision ~ 1 ppmv
- Gaussian plume model implemented for point sources (possibly multiple) and cities (surfacic emission)
- Work performed with CNES support within a cooperation of SPASCIA (P. Prunet), LSCE (G. Broquet) and IPSL (C. Camy-Peyret)

GEO mode

MicroCarb mode

GEO AND MICROCARB MODE

COMPARISON

Conclusion

- Additional partnership are put in place at European level to place MicroCarb in an European frame and contribute to prepare future operational systems (Copernicus)
- Instrument and satellite AIT to be started soon
- Processors benchmarked and extensively tested using OCO-2 data and give promising results
- MicroCarb is in time and heading for a launch in 2021

Thank you for your attention !

