Investigating the Utility of CO₂ and CO Analysis in **Tracking Fossil Fuel CO₂**

Ave Arellano THE UNIVERSITY OF ARIZONA

Manuscript in Review

Tang, W., B. Gaubert, A.F. Arellano, L. Emmons, Y. Choi, J. DiGangi, G. Diskin, X. Xu, C. He, H. Worden, S. Tilmes, R. Buchholz, H. Halliday, and M. Zou (2019), Investigating the Utility of CO2 and CO Analysis in Tracking Fossil Fuel CO2, J. Geophys. Res., in review.

funding from NASA

Project Collaborators

B. Gaubert (NCAR), K. Miyazaki (JAMSTEC/JPL), H. Worden (NCAR), J. DiGangi (NASA LaRC), A. Chatterjee (NASA GMAO)

NASA ACMAP: Substantiating Key Synergies Between Air Quality (AQ) and Greenhouse Gas (GHG) Monitoring from Space: A Case for Anthropogenic CO₂ and CH₄ Constraints from CO and NO₂

funding from NASA

A synthesis of research using observationsbased analysis techniques that aim to better quantify emissions

en Issions usin^G

nalysis

Qn

ations

CO is mainly a product of incomplete combustion

Fuel Combustion Efficiency $C_{x_1}H_{x_2}O_{x_3}N_{x_4}S_{x_5} + n_1(1+e)(O_2 + 3.76N_2) \rightarrow$ $n_2CO_2 + n_3H_2O + n_4O_2 + n_5N_2 +$ $n_6CO + n_7NO + n_8NO_2 + n_9SO_2 + n_{10}C + \cdots$

Combustion Products

Low Temperature Combustion: High CO, Low NO₂ High Temperature Combustion: Low CO, High NO₂, High BC

Observations from AQ can provide information on efficiency and sectoral emission characteristics (at city scale and chemical weather scale).

CO plays a role in global AQ chemistry

Since CO (τ ~month) is right in the middle between OH (τ ~seconds) and CH₄ & CO₂ (τ ~years), one can suppose that AQ chemistry should matter at the scales of carbon weather

A loss in CH₄ is

Main OH loss

...a loss in CO is a gain in CO₂

On AQ/GHG Synergies: Chemical Tracer Info

Constraints from CO:

- 1) Help assess/monitor combustion efficiency (and MCE for fires)
- 2) Help identify errors in spatial and temporal distribution of emissions in the absence of CO₂ (and/or CH₄) data
- 3) Help track pollution plume transport at carbon weather scale (incl. convection)

4) Identify sectoral shifts/changes in fuel use/ type (e.g., coal to natural gas)

5) Help provide more accurate representation of CH₄ loss

Constraints from NO₂:

- Help distinguish high temperature combustion activities (in the absence of lightning)
- Help identify errors in spatial and temporal distribution of emissions in the absence of CO₂ (and/or CH₄) data

3) Help track pollution plumes (and transport) at city scale

4) Identify sectoral shifts/changes in fuel use/ type (e.g., coal to natural gas)

5) Help provide more accurate representation of CH_4 loss (via OH source) and O_3

Evaluating CAMS CO and CO₂ using KORUS-AQ

		Seoul	Taehwa	West Sea	Seoul–Jeju jetway	Seoul–Busan jetway	
dCO/dCO ₂	DC-8 measurement	9.09 ± 0.48	15.3 ± 0.56	28.17 ± 0.75	10.37 ± 0.31	15.86 ± 0.73	13.29 ± 0
$(ppbv ppmv^{-1})$	FC16s	9.84 ± 0.29	14.31 ± 0.40	30.86 ± 1.64	13.00 ± 0.27	13.39 ± 0.51	12.28 ± 0
	ANs	8.21 ± 0.45	13.71 ± 0.48	30.60 ± 1.73	14.98 ± 0.45	12.68 ± 0.47	$12.60 \pm$
	FC9s	11.56 ± 0.62	16.06 ± 0.57	32.44 ± 1.77	11.68 ± 0.35	13.87 ± 0.54	$12.52 \pm$
Correlation of	DC-8 measurement	0.78	0.68	0.89	0.62	0.60	(
CO and CO ₂	FC16s	0.94	0.83	0.42	0.83	0.74	(
	ANs	0.77	0.71	0.25	0.61	0.76	(
	FC9s	0.78	0.70	0.36	0.60	0.73	(
Correlation of	FC16s	0.90	0.61	0.80	0.46	0.55	(
Bias _{CO} and	ANs	0.66	0.59	0.82	0.36	0.63	(
$Bias_{CO_2}$	FC9s	0.64	0.52	0.82	0.33	0.54	(

While we find overestimation in CO₂ (and underestimation in CO), CAMS shows a remarkable agreement in observed ratios (i.e., being able to capture the observed combustion contrast between Korea and China). We also found that CAMS have issues at local-to-urban scale (e.g., weak PBL mixing). More importantly, we find that initial condition AND resolution matter in forecast skill of these species (Tang et al., ACP, 2018).

Tractable Approach to Joint CO₂ and CO Simulation

CO ₂ fluxes	Spatial Res.	Temporal Res.	Period	Transport Model	Fossil Fuel Priors	Biosphere and Fires Priors	Ocean Priors	Main Reference
CAMS (v17r1)	3.75° lon 1.875° lat	3-hourly	1979- 2017	LMDz ¹	EDGAR scaled to CDIAC	ORCHIDEE (climatology) + GFEDv4	Landschüster et al. (2014)	Chevallier (2018) ²
CT2017	1º lon 1º lat	3-hourly monthly	2000- 2017	TM5	"Miller" (EDGAR scaled to CDIAC) & "ODIAC"	CASA w/ GFED 4.1s GFED_CMS	Jacobson et al. (2007) Takahashi et al. (2009)	Peters et al. (2007) ³
CTE2018	1º lon 1º lat	monthly	2000- 2016	TM5	EDGAR+ IER scaled to CDIAC	SiBCASA- GFED4	Jacobson et al. (2007)	van der Laan- Luijkx et al. (2017) ⁴

Posterior GHG fluxes are incorporated in CESM/CAM-Chem 'CTM'. We use CO emissions based on 'fine tuning' HTAP prior emissions to match observed CO (Tang et al., JGR, 2019). However, ensemble of CO emissions (and NO₂) are planned. We also plan to incorporate other sources of posterior CO₂ (and CH₄) fluxes in our succeeding work (e.g., CMS flux, OCO-2 Flux MIP)

Sanity Check: CO₂ and CO Budget during KORUS-AQ

		CO2 (PgC)				
	-	Region	CT2017	CTE2018	CAMS	
		Korea	0.01	0.01	/	C
		Japan	0.02	0.03	/	C
	fossil fuel or	EA-S	0.07	0.07	/	1
	anthropogenic	EA-M	0.11	0.11	/	2
C		EA-N	0.05	0.04	/	1
Sources		the rest	0.53	0.53	/	1
	fire		0.11	0.11	/	9
	biosphere		/	/	/	3
	ocean		/	/	/	C
	chemical production		/	/	/	58
	source total		0.90	0.89	/	9
	biosphere		0.63	0.90	/	
Sinks	ocean		0.26	0.18	/	
	chemical loss*		/	/	/	10
	sink total		0.88	1.08	/	10
Net (Sou	rces-Sinks)		0.01	-0.19	-0.04	-(
Initial Burden			854.83	854.37	853.98	15
Final Bu	rden		854.93	854.19	853.93	14
Initial-Fi	nal		-0.10	0.18	0.05	1
Budget d	elta		-0.08	-0.01	0.01	5

Tagging FFCO₂ and CO in CAM-Chem

Evaluating CAM-Chem CO and CO₂ using KORUS-AQ

NOAA/ESRL CCGG	
----------------	--

		NOAA/ESRL CCGG			TCCON				NASA DC-8 KORUS-AQ				OCO-2 MOPITT		
		AMY	LLN	UUM	WLG	Amy	Sag	Tsu	Rik	Seoul	Taehwa	West Sea	Seoul Jeju	Seoul Busan	Study Domain
Obs	CO_2	415	407	406	405	403	406	403	403	415	408	411	411	408	405
Mean	СО	217	124	142	130	109	108	103	99	266	163	234	223	183	111
Obs Std	CO_2	12	3	6	3	3	2	2	3	13	5	5	10	4	2
	СО	67	55	26	26	8	15	14	15	113	73	143	101	64	19
Obs R _{CO2,CO}		0.32	0.31	0.48	0.36	0.59	0.52	0.37	0.28	0.79	0.68	0.89	0.62	0.60	0.22
Obs dCO/dCO ₂		5.90	18.90	4.53	9.42	2.86	7.40	5.63	4.81	9.13	15.28	28.20	10.37	15.92	11.90
Model	CO_2	414	405	405	406	403	405	404	403	411	407	408	411	408	405
Mean	СО	239	142	129	187	105	111	102	93	237	143	202	213	155	118
Model	CO_2	6-8	2	6-8	5-7	2-3	~2	~2	3-4	6-11	2-4	2-4	7-10	2-6	1-2
Std	СО	124	103	52	173	12	19	17	20	133	70	119	117	62	27
Model R _{CO2,CO}		-0.12	0.46	0.16	0.40	-0.2	0.51	0.33	0.05	0.56	0.21	-0.10	0.65	0.25	0.25
(m1n/ma	ax)	0.18	0.70	0.27	0.71	-0.1	0.54	0.44	0.29	0.73	0.60	0.76	0.81	0.66	0.41
Model	dCO/dCO_2	21.01	48.85	6.64	33.88	NaN	9.53	7.43	5.57	12.61	16.56	33.66	11.54	10.68	16.96
(min/max)		26.17	59.80	8.68	44.47	INAIN	11.24	8.67	7.53	20.91	30.91	48.28	16.08	26.79	27.05

Simulated and Observed FFCO₂ during KORUS-AQ

CAM-Chem tagged FFCO₂ shows good overall agreement with derived FFCO₂ from radiocarbon samples. Again, we find that CO is more correlated with FFCO₂ than CO₂, suggesting that CO data can be useful to track FFCO₂. Our ability to estimate regional contributions may be useful for complementary FFCO₂ inversions (e.g. chemical downscaling).

Profiles of Tagged CO and FFCO₂ over Seoul

CO as a Chemical Tracer of FFCO₂ Transport

Info on Combustion Efficiency from Tagged Tracers

CHemical Inverse Modeling system Experiments

An intercomparison activity on current chemical data assimilation and inverse modeling systems (a.k.a. TransCom-X)

Contributors: B. Gaubert (NCAR) K. Miyazaki (JAMSTEC/JPL) A. Inness (ECMWF) Z. Jiang (UT/JPL/NCAR/USTC) B. Zheng (LSCE) J. Flemming (ECWMF) Y. Yin (LSCE/JPL)

Research Objectives

1. Assess the state of CO as inferred from these reanalyses

2. Characterize associated uncertainties incl. estimates of emissions and other drivers of CO trends

Potential Application: Provide an ensemble of OH fields (for CH₄), constraints on fire CO₂

Product	Model ****	Resolution* Ionº x latº Iev	Period **	Emissions ***	Update ****	CO Obs *****	Algorithm *****	Main Referenc			
CAMSiRA	IFS/CY40R2 C-IFS CB05	~1.1 x ~1.1 (T159) 60 lev	2003-2015	MACCity, GFASv1.2 MEGAN2.1	State	MOPITTv5	4D-Var IFS/CY40r2	Flemming et al. ACP, (2017)			
CAMSRA	IFS/CY42R1 MOZART-3	~10 x ~1.0 (T255) 60 lev	2003-2016	MACCity GFED&GFASv0 MEGAN2.1	State	MOPITTv6	4D-Var IFS/CY42r1	Inness et al., ACP, (2019)			
MACCRA	IFS/CY36R2 MOZART-3	~1.1 x ~1.1 (T255) 60 lev	2003-2012	MACCity GFED&GFASv0 MEGAN2.1	State	MOPITTv4 & IASI	4D-Var IFSCY36r2	Inness et al., ACP, (2013)			
CAM-Chem	CESM1.2/ CAM-Chem	2.5 x ~1.9 26 lev	2002-2013	MACCity FINN1.5 MEGAN2.1	State	MOPITTv5	EAKF DART	Gaubert et al., JGR, (2016)			
Geos-Chem	GEOS-Chem	5 x 4 30/47 lev	2001-2015	EDGAR3.2 FT2K GFED3 MEGAN2.0	Source	MOPITTv6	4D-Var	Jiang et al., ACP, (2017)			
TCR-1	CHASER	~2.8 x ~2.8 32 (26) lev	2005-2012	EDGAR4.2 GFED3.1 GEIA	State & Source	MOPITTv6	LETKF	Miyazaki et al., ACP, (2015)			
TCR-2	MIROC-Chem	~1.1 x ~1.1 32 (26) lev	2005-2017	EDGAR GFED GEIA	State & Source	MOPITTv7	LETKF	Miyazaki et al., ACP, in prep			
LMDZ-1	LMDz SACS	~ 3.7 x ~1.9 39 lev	2000-2017	MACCity GFED4s MEGAN/POET	Source	MOPITTv7	4D-Var PYVAR	Zheng et al., ERL, (2018)			
LMDZ-2	LMDz v4 SACS	~3.7 x ~1.9 32 lev	(2002-2011) 2010-2015	MACCity GFED3.1 LMDz-INCA	Source	MOPITTv6	4D-Var PYVAR	Yin et al., ACP, (2015)			
* approximate res	* approximate resolution based on post-processing from the product team or as requested										

* approximate resolution based on post-processing from the product team or as requested ** published original period may be longer, period as requested, use of full year for starting year *** base anthro/fire emission, actual may be an updated version, see details in main reference **** can be multi-species

Spatial Distribution of CO Burden

Temporal Distribution of CO Burden

THE.

Summary:

- CO and NO₂ data can be used as chemical tracers of FFCO₂, as well as constraints on tropospheric O₃ chemistry (via OH on CH₄ loss).
- Careful consideration on how these observational constraints are translated to top-down emission estimates is warranted.
- Development of a tractable, ensemble-based, GHG/ AQ system which uses posterior fluxes from inversions and reanalysis is on-going; Has potential application with TROPOMI, GOSAT 2/3, GeoCarb, and OCO-2/3 for example. Collocated in-situ and airborne measurements of these species are critical.
- They should be considered as auxiliary/ supplementary datasets in tracking FFCO₂ and CH₄ and in reducing uncertainties on associated emission estimates (esp. w/ regards to consistency across species).

