

Korea Aerospace Research Institute 115 Gwahangro, Yuseong-gu Daejeon, 305-333, Korea

Calibration and Validation, and Image data Quality for KOMPSAT-3

September 30, 2014

DongHan Lee^{a,b}, DooChun Seo^a, HeeSeob Kim^a EungSik Lee^a, MinA Kim^a, HaeJin Choi^a ^a Korea Aerospace Research Institute (KARI) ^b USGS EROS Visiting Scientist

Mom~! & Dad~! of Artificial Remote Sensing Satellite

KOMPSAT Program in KARI

KOMPSAT-3 Cal/Val

KOMPSAT Program in KARI

	KOMPSAT-1	KOMPSAT-2	KOMPSAT-3	KOMPSAT-5	COMS	KOMPSAT-3A
	And the second s			- Siles		
Davlaad	EOC, OSMI	MSC	AEISS	COSI	MI, GOCI	KISS
Payloau	Visual	Visual	Visual	SAR-X	Meteorology	Visual+MWIR
Launch	1999~2008	2006~	2012.5~	2013.7~	2010~	2014.00
Performance	6.6m (EOC) 1km (OSMI)	1m, 4m 10bit	0.7m, 2.4m 14bit	1m, 3m X-band	500m	0.55m, 2.2m 5.5m (MWIR)
Image mode	Strip	Strip	Spot, Strip, Wide	HR, Strip, Wide		Spot, Strip, Wide
Swath	15km	15km	15km	15km	2,500km	15km
Orbit	Sun-Sync	Sun-Sync	Sun-Sync	Sun-Sync	Geo-Station	Sun-Sync
KOMPSAT-6 (SAR) & COMS-2 will be developed by KARI after KOMPSAT-5 & COMS						

KOMPSAT-3 Overview

Ground Sampling Distance	(PAN) 0.7 m @altitude 6 (MS) 2.8 m @altitude 6	585km(nadir) 85km(nadir)			Nadir Module	
Swath Width	16 km (nadir)				equipment Modu	
Spectral Bands	PAN MS1 (Blue) MS2 (Green) MS3 (Red) MS4 (NIR)	: 450 ~ 900 nm : 450 ~ 520 nm : 520 ~ 600 nm : 630 ~ 690 nm : 760 ~ 900 nm		Propulsion Module Control of the second seco	S/C Adapter	
Dynamic Range	14 bits / pixel					
Modulation Transfer Function	(PAN) 8%, (MS) 12%	(PAN) 8%, (MS) 12%				
Signal to Noise	> 100					
Location Accuracy	< 70 m CE90(< 30 m R	MSE is expected)				
Orbit	Sun Synchronous Orbit • Altitude : 685 • Inclination : 9 • MLTAN : 13:3	5.13 ± 1km 98.14 ± 0.05 degre 0 +10/-15 min	20		l	
CEOS WGCV-38 (2014)	Korea Aeros Satellite data Ca	pace Research Institute (libration and Validation te	KARI) eam (SCV)		-7-	

KOMPSAT-3 Cal/Val work Flow in LEOP

Performance of KOMPSAT-3 after Cal/Val

SNR 100 >> 100 (TDI 64) MTF 8%(PAN) Across: 8~10% (TDI 64) Strip imaging	
MTF 8%(PAN) Across: 8~10% (TDI 64) Strip imaging	
Cal/Val 12%(MS) > 19% (MS) Level 0	
Phase GSD0.7m(PAN) 2.8m(MS)0.7m (PAN)Strip & Nadir imaging	
Pointing accuracy1.2kmAcross: 90m Along: 1 secStrip imaging	
Location accuracy70m CE90< 70m CE90	D
$ MTF after MTFC \qquad \frac{13\%(PAN)}{19\%(MS)} > 20\% (PAN) \qquad Level 0 $	
Cal/ValPhaseRegistration0.5pixel RMS (MS)0.5pixel RMS (MS)Strip imaging	
Ortho-image accuracy 3.5m CE90 3.5m CE90 Strip imaging (Horizontal)	

Radiometric Cal/Val for KOMPSAT-3

CEOS WGCV-38 (2014)

Geometric Cal/Val for KOMPSAT-3

CEOS WGCV-38 (2014)

Korea Aerospace Research Institute (KARI) Satellite data Calibration and Validation team (SCV)

Spatial Cal/Val for KOMPSAT-3

Focusing with Star image data

FM	IC Temp	erature(°C)	FV	/HM - Acro	SS	F١	WHM-Alon	g	MTF	-(%)	
а	t Star	at Ground	20%	50%	80%	20%	50%	80%	Across	Alon	ng
	-1.46	-1.00	2.881	1.666	0.997	2.816	1.803	1.115	12.52	7.	.85
	-0.96	-0.50	2.750	1.665	0.957	2.644	1.745	1.082	11.41	9.	.13
	-0.67	-0.21	2.834	1.580	0.926	2.765	1.789	1.065	13.22	7.	.37
	-0.46	0.00	2.907	1.650	1.000	2.458	1.587	0.901	12.44	12.	.69
	-0.26	0.20	2.612	1.650	0.997	2.994	1.813	1.072	12.14	8.	.02
	0.04	0.50	3.207	1.747	1.011	2.896	1.808	1.124	10.54	7.	.67
	0.54	1.00	3.122	1.773	1.065	2.929	1.801	1.019	10.76	7.	.82
	CEOS WG	CV-38 (2014)		Korea A	erospace Resea	rch Institute (KA	RI)			-13-	

Korea Aerospace Research Institute (KARI) Satellite data Calibration and Validation team (SCV)

Concept of MTF Compensation (MTFC)

- Purpose and Necessity of MTF Compensation
 - Restoration of the distortion of the image data from the Sensor deviation.
 - Enhancement of the sharpness of the image data
 - But, increase the Noise and get the other distortion; Ringing, etc.

• Highlight the only information in Image data

- But, must not distort the information.
- Change, Remove, Add (X)

• Suppress the Noise against MTFC

- Match the MTFC with the De-noising filter
- Don't read any information as the Noise.
- Don't read any noise as the Information.

• MTFC algorithm must have the specific character of the Sensor.

- PSF (Point Spread Function) has to be measured by the optimum method (Star).
- Optimal MTFC algorithm (Wiener filter, Lucy Richardson, Sparse Prior, etc.)

KOMPSAT-3 PSF from Star

MTFC of KOMPSAT-3 (I like it~!)

RAW image (Across)

CEOS WGCV-38 (2014)

MTFC image (Across)

No Ringing~!

CEOS WGCV-38 (2014)

Product Processing Flow After Cal/Val

10. Level 1R

Tornado, KOMPSAT-3, Louisville Mississippi USA, imaging date: 2014.05.05

AX.

Google Map

A MARKET

Image data Quality for User in KARI

Image data Quality for Users

- There is a technical gap between the requirement for manufacturing the satellite and the requirement for the image data quality for Users.
- Need & Define the item and the quantitative value for the image data quality for Users
 - Almost Users have eyes without the concept of the quantitative image data quality~!
- There are Two kind of the Quality items for Users;
 - Representative items: MTF, SNR, GSD, Absolute radiometric Gain/Offset, Radiometric resolution, etc.
 - Different valued items per each image data: Noises, etc.
- With only technology of manufacturing of Satellite and Sensor, the requirements of Users cannot be complied.
 - Periodical monitoring of the image data Quality
 - Optimal ground processing for the Satellite and the Sensor
 - Continually talking and feed back with Users

KOMPSAT-3 Product (Image data) Quality (IQ)

during Normal operation

Quality Checking for K3 Product (Draft)

✤ NO GSD_MTE SNR

QR (Quality Report) for KOMPSAT-3 Image Data

QR No. QR-K3-20130314-0001							_								
User No.		SI							on C	(R~!!					
Product ID		K3_	K3_20130310175432_04341_19891327_L1R												
S/W Vers	ion	PMS	S. V1.(0.1303	306.00)1	-								
Processi	ng Date	2013	3-03-0)6			Processe	ed By KA	RI, Gil-Dong	Hong					
Anomalies Image		Band (©- Level 2, ●- Level 3)			vel 3)	0	Constraint (TBR)		Check	Comment	S				
	C C	В	N G	IS R	N	PAN	Level 1	Level 2	Level 3						
Dynamic	range						> 1000	500-1000	< 500						
Saturatio	n						< 1%	1-2%	> 2%						
Abnorma (except E	l Pixel Blooming)						~2	3~10	> 10						
Equalizat (NUC)	ion: inter-Detector						20DN	20~50DN	> 50DN						
	diagonal, horizontal, vertical, First pixel						none	isolated noise	recurrent noise		-	Isolated &	Isolated & Recurrent (TBR)		
Pattern noise	Center Pattern						none	isolated noise	recurrent noise		-	Number	Isolated	Recurre	nt
	Pixel burst (Port difference)						20DN	20~50DN	> 50DN			Area of 1 part	100x100	100x10	0
Compres	sion noise						none	isolated blocks	recurrent blocks			DN difference	20~50 DN	> 50 DN	1
Registrat	ion (MS-MS)						< 0.5	0.5-0.75	> 0.75			Level 1: Accept Level 2: To be P	evel 1: Accepted evel 2: To be Proposed		
Registration (MS-PAN)							< 0.5	0.5-0.75	> 0.75			Level 3: Rejecte	ed		
Location accuracy							< 70m	70-150m	> 150m		*	Cloud, Water, S	Snow area: to	be take (off
Comments / Image chip												compression, N	Saturation, IUC and patte	ern noise	
Review D	ate						Reviewed	1 Ву						22	
Review Comments														-23-	

(IQ) Dynamic Range

Anomalias Imago	(Constraint (TBR)					
Anomalies image	Level 1	Level 2	Level 3				
Dynamic range (0 ~ 16363)	> 1000	500~1000	< 500				

K3 20130110191806 03480 18511222 L1R

Histogram of Linear 2% in Scroll window in ENVI

- Linear 2% in Scroll window in ENVI (TBR)
 - ✓ DN(Max Min)
 - ✓ "3500" = 4224 704
- Except the next area
 - ✓ Uniform bright area
 - ✓ Forest, Farm, Desert, Ice, Mountain, Big river, Big lake, etc.
 - ✓ Snow, Cloud, Ocean, etc.
- Only ROI requested by User
- User want a sufficient dynamic range in the satellite radiometric resolution.
 - ✓ KOMPSAT-3: 14bit
 - Not stretching in the Processing system

※ For User, what is the threshold for this?

CEOS WGCV-38 (2014)

Korea Aerospace Research Institute (KARI) Satellite data Calibration and Validation team (SCV)

K3_20130310175432_04341_19881329_L1R

(IQ) Saturation

Anomalias Imago	(Constraint (TBR)					
Anomalies image	Level 1	Level 2	Level 3				
Saturation	< 1%	1~2%	> 2%				

K3_20130310175432_04341_19881329_L1R_B

- Basically, >16383 DN, but
 - The Saturated area has a width of DN after the Processing system
- Except the next area
 - ✓ Snow, Ice, Cloud, Salt desert, etc.
- Only ROI requested by User
- User never want a saturated image data product.
 - Several exposures of Satellite be needed according to the imaging area.
 - ✓ KOMPSAT-3 has Two TDI stages.
 - KOMPSAT-3 data collection planning system has a Radiance (Reflectance) calculating module in Worldwide.

* For User, what is the threshold for this?

Korea Aerospace Research Institute (KARI) Satellite data Calibration and Validation team (SCV)

Compression noise (Additional Cal/Val item)

		Constraint (TBR)			Isolated	Recurrent
Anomalies Image				Number	2~4	>= 5
	Level 1	Level Z	Level 3	Area of 1 part	100x100	100x100
Compression noise	none	isolated	recurrent	DN difference	20~50 DN	> 50 DN

K3_20130210093832_03927_04161188_L1R_B

- Compression ratio is '5.5' by CCSDS 122.0-B-1 (Wavelet)
 - ✓ PAN has a little
 - ✓ MS has a lot
 - Uniform area nearby high frequency area in city
 - User don't want the compression noise
 - ✓ KOMPSAT-3 has been changed
 - PAN: '5.5'
 - MS: '3'
 - ✓ KOMPSAT-3 has little compression noise with the Compression ratio '3'.

※ SNR on the Right side is larger than the Left.※ But, User don't want the Right side.※ For User, what is the threshold for this?

Issues and Discussion

CEOS WGCV-38 (2014)

Additional Cal/Val items during Normal period

• User's requirement for the Image data Quality may be different and higher than the requirements in KOMPSAT-3 system Specification.

Item	Title	Content	Status
Pixel burst	On Only MS	Develop, Test and Apply the de-noising algorithm of it	Done
Port Difference	On Only MS	Develop, Test and Apply the de-noising algorithm of it	Done
Center Pattern Difference	Different noise between each CCD Detector	After reducing Compression noise, and updating RNUC and De-noising, the Center difference has been reduced.	Done
RNUC (Residual NUC)	Non-linearity behind DN 1500	New RNUC table has been updated in the Processing system.	Done
Compression noise	Many Compression noise in MS with Compression ratio '5.5'	Updated by PAN '5.5' and MS '3'	Done
CEOS WGCV-38 (2014)	Korea Aerospace Re Satellite data Calibration	search Institute (KARI) and Validation team (SCV)	-28-

Issues and Discussion

- QR (Quality Report), that is the Internal report in KARI to monitor the KOMPSAT-3 Product (Image data) Quality, is Draft just now.
- Definite quantitative value for the image data Quality has to be determined.
 - ✓ For, and From User
 - ✓ Items
 - ✓ For User, what is the threshold for them?
- The main purpose of KOMPSAT-3 is just 'Detecting and Recognizing'.
 - ✓ High resolution remote sensing satellite (GSD @ nadir = 0.7m)
 - ✓ Any difference of the image data Quality according to Resolution?
 - ✓ If no, what is the representative item of the image data Quality for them?
- In case of KOMPSAT-3 & KOMPSAT-2,
 - ✓ After Cal/Val, all Requirements of the image data Quality were Complied.
 - ✓ But User didn't comply the Quality of K3 & K2 Product,
 - ✓ and then, Additional Cal/Val works for User have been done and doing~!
- We need more works for it~!

Representative & Product Quality (?)

- These are my Questions and Concerns.
- Is there standard and general Representative and Product Quality for Users?

	Car	Computer	Imagery	Remark
by Purpose	Bus, Sedan, SUV, Truck, etc.	Server, Desktop, Laptop, Tablet, etc.	SAR, IR, Visual, Resolution, etc.	
by Budget	Bentz, BMW, Lexus Toyota, Honda Hyundai, Kia	?	WV, GeoEye Pleiades, KOMPSAT SPOT, Landsat	
Representative	Model, Engine size, Transmission, etc.	CPU, Memory, HDD (SSD), Weight, OS, etc.	GSD, MTF, SNR, etc.	Performance (Specification)
Product Quality (IQ)	Scratch, Driving, etc.	Dead pixel, OS, S/W, KB, Mouse, etc.	Noise, etc.	User can look at & recognize

Importance of Quality

- There are several Use (Purpose) for Users according to the Image data Quality.
- With GSD, MTF & SNR, the Image data Quality cannot be explained more clearly to Users.
 - ✓ New representative estimator for it has to be needed.

	Car	Computer	Camera	Imagery
General Spec. (Same)	Similar Speed, 5 persons, 4 door, Extra parts	OS (Windows), Functions	No. of Pixel	GSD, Radiometric Resolution, Swath width (MTF, SNR)
Expensive (High Quality)	Comfortable, Safety, Stability, Extra function (?) Sports car	Comfortable, Fast, Clear monitor, More storage, Light (Use) Design, Develop, High technic)	DSLR, Size of CCD (CMOS) Clearness (MTF), Lens, Extra function	High Quality, Clearness, Ortho-rectified, Noise, (NIIRS) (High MTF & SNR)
Cheap (Low Quality)	Just Cheap, Mileage, Second car, First car for children	(Use) Office, Game, Internet, Education	Digital camera, Smart phone, Light, Easy, Small	Low Quality (Low MTF & SNR)
CEOS WGCV-38 (2014)	Kc Satellit	prea Aerospace Research Institute (Ka e data Calibration and Validation tea	ARI) um (SCV)	-31-

Thank you for KOMPSAT~!

