

Microwave Sensors Subgroup (MSSG) Report

Xiaolong DONG

MSSG Chair

National Space Science Center, Chinese Academy of Sciences & National Remote Sensing Center of China (NSSC/CAS, NRSCC) Email: <u>dongxiaolong@mirslab.cn</u>

CEOS WGCV-39 hosted by DLR Berlin, Germany

Focuses and progresses

Future work and recommendations

All EO sensors operated in microwave spectrum, except SAR

Works currently focuses on:

- ♦ Microwave Radiometers (sounders, imagers)
- ♦ Radar Scatterometers
- ♦ Radar Altimeters
- Other related aspects:
 - ♦ GNSS and GNSS-Reflected signal applications
 - Spaceborne weather radars: Cloud and Precipitation Radars (e.g PR, CPR)
 - ♦ Ice sounders and GPR

- Relatively low spatial resolution (km, tens of km, hundreds of km) for atmospheric, oceanic, large-scale terrestrial environmental applications
- Data dependent on sensor and processing (model, retrieval, algorithm, cal/val)
- Importance of processing and quality control

Challenges

Climate and global change applications

- Higher requirements, especially for climate and global change applications: sensitivity, accuracy, stability, traceability;
- Cross-calibration requirements of sensors flown on different spacecrafts and developed by different agencies;

New developed sensors

- ♦ Interferometric synthetic aperture radiometers
- Polarized radiometers and scatterometers
- ♦ Scatterometers for terrestrial applications
- ♦ Wide swath and SAR altimeters...

Many new techniques need to be developed for cal/val...

- High precision requirements:
 - \diamond Brightness temperature: 0.1K
 - ♦ Sea level: 1mm
 - ♦ Backscattering coefficient: 0.1dB
- Stability, traceability, historical data record
- Cross-calibration/validation requirements:
 - Traceable reference for processing or historical data
 - Small shift of sensor parameters (frequency, bandwidth, on-board calibrators,...)
 - Calibration models/algorithms for different sensors by different agencies

Identify priorities and focuses
 Organize focus groups
 Formulate implementation plans

Objectives \diamond Support CDR from microwave; \diamond Support CEOS VCs; \diamond Benefit member agencies and communities; Priorities and focuses MWR & SCAT Level 1 data ♦ Brightness temperature for MW radiometer ♦ Backscattering coefficient for radar scatterometer **MWR & ALT standards** MWR Onboard calibrator (noise source, RAM blackbody) Prelaunch measurement and characterization ♦ GNSS-buoy references Models and algorithms

- Discuss with GSICS Microwave Subgroup for potential coordination and prepare for joint meeting and activities
- Discuss with International Ocean Surface Wind Vector (IOSWV) Science Team and prepare for next meeting (May 19-21)
- Progresses on MW radiometry
- Progresses on radar scatterometry
- Progresses on radar altimetry

CE Discuss and coordination with NSS GSICS MWG

- Discussed in NOAA NESDIS during WGCV-38
- Preparing an joint GSICS-MWG and WGCV-MSSG Meeting in November 2015 or May 2016 (tbc in GSICS-MWG meeting on May 13, 2015)

Topics to be discussed:

- Currently available calibration/inter-calibration algorithms and products at GSICS MWG
- Currently available calibration/inter-calibration algorithms and products at WGCV MSSG
- A Microwave Standard procedure/definitions at GSICS MWG and WGCV MSSG
 A
- Exchange of ideas and collaborations between GSICS MWG and WGCV MSSG
- New instruments and future directions for GSICS MWG and CEOS MSSG

CE®S Discuss and coordination with NSSC IOVWST & OSVW-VC

- Discussion during 4th CFOSAT Science Workshop in Guangzhou in Feb 3-5, 2015
- More coordination will be done in 2015 IOVWST meeting in May 19-21 in Portland, USA
- Strategy and preliminary results to be discussed during IGARSS 2015 invited sessions
- Topics to be implemented:

♦ Cal/X-cal for sigma 0 by NOC techniques

Quality control standardization for sigma 0 and OVW product

Focuses

Calibration of innovative MWR (MIR, Microwave Interferometric Radiometer)

Prelaunch and onboard calibration and characterization for CDR requirements

Progresses

- Organizing focus group for calibration of MIR (UPC, Spain and NSSC, CAS)
- Identifying sources of onboard calibration uncertainty and bias, identifying prelaunch requirements for CDR
- \diamond Identifying elements of cal/val of MW products

Interferometric MWR

- MIR calibration challenges
 - BT retrieval by interferometric measurement with designed base-line combinations
 - Output BT uncertainty and bias from both measurement and imaging algorithms
 - \diamond SMOS BT data shows big bias
- Fostering focus group for MIR
 - ♦ SMOS L1 data group: C. Ignasi (UPC), X. Yin (LOCEAN/CNRS & NSSC/CAS)
 - Chinese Ocean Salinity Mission team: H. Liu (NSSC/CAS), X. Yin
- Main activities and processes
 - Sharing calibration processing procedure and algorithms;
 - Comparison and assessment of re-processed data;

Future work plan

- ♦ Guideline for onboard calibration of MIR
- ♦ Reference replacement calibration for MIR
- Survey, characterization and mitigation of extraterrestrial emission impact for MIR

NSSC

uncertainty and bias of MWR for CDR

Requirements from CDR

- ♦ Long-term stability
- Consistency between different instruments
- ♦ Precision requirements

Focuses

- \diamond Procedure and processing of calibration
- Stability and characterization of On-board calibrators
- Prelaunch calibration requirements

Progresses

- ♦ Requirements discussed with GSICS-MWG
- \diamond Key topics identified
 - Antenna characterization
 - On-board calibrator characterization
 - Near-field characterization for emission and effect from satellite body structure

Future work plan

- ♦ Joint WGCV MSSG-GSICS MWG meeting (Nov 2015 or May 2016);
- Identify cal/val focuses for CDR requirements
- ♦ Organize focus group for several topics
- Guidelines for prelaunch calibration and characterizations

- Discussed during WGCV-38 (Oct 2014) and WGCV planning meeting (Feb 2015) (B. Bojkov, C. Cao and X. Dong)
- Water vapor by nadir-looking MWR identified;
- Further steps:
 - Organize focus group during Dragon Meeting in June, 2016; (ESA, EUMETSAT, CNES, NSSC, NSOAS...)
 - ♦ Draft pre-task plan
 - Cross-cutting development: combination of GNSS-RO data with MWR data
 - MWR vapor can be first microwave cal/val portal element
 element

Status:

 \diamond joint activities with IOVWST and OSVW-VC;

Cross bilateral collaborations to avoid political difficulties (EUMETSAT and KNMI as connection)

Progresses

- Organizing focus group: KNMI (A. Stoffelen), NSSC/CAS (NSSC/CAS), ISRO, NOAA
- NOC (NWP ocean calibration) as reference for X-cal of L1 data
- Preliminary assessment had been made for HY-2 scatterometer, oceansat-2 scatterometer and METOP ASCAT data

Future work plan

- ♦ Focus group meeting in IOVWST-2015 and IGARSS 2015
- \diamond Guideline of NOC for scatterometry L1 data
- ♦ Guideline for scatterometry data quality control for current and future OSVW missions (ASCAT, OSCAT, HY-2/SCAT, CFOSAT)
- ♦ Direct support to OSVW-VC

Requirements

- Climate and global change research requires long-term data with continuity;
- Sea level products related to orbit and algorithms (corrections) and requires x-cal and val

Priority focuses

- Cross calibration for different missions;
- Absolute reference (GNSS-buoy) calibration;
- Recent progresses and status
 - HY-2A altimeter with Jason-1/2 (NSOAS, CNES, ESA), cross comparison/calibration by NSOAS/SOA, CNES and ESA with very good encouraging results.
 - \diamond Based on bilateral cooperation

Future work plan

- \diamond Exchange cross-comparison
- Development of absolute validation (GNSS-buoy)
- Development of modeling for validation (satellite with in-situ data)
- ♦ Exchange of calibration site data
- $\diamond \textsc{Coordination}$ with and support to OST VC

Progresses:

- ♦ Some focuses identified;
- ♦ Focus groups organized;
- Coordination and discussions with other groups (GSICS-MWG, IOVWST)

Future work plans

- MW radiometry: MIR calibration; guidelines for prelaunch calibration (with GSICS-MWG); vapor product with nadir looking MWR;
- Radar scatterometry: NOC for L1 and L2 data; support to OSVW-VC and community
- Radar altimetry: cross-calibration; GNSS-buoy reference; support to OST-VC and community

