

NOAA Satellite Cal/Val Progress Update

Changyong Cao & Francis Padula NOAA/NESDIS/STAR

41th CEOS Working Group on Calibration and Validation Plenary (WGCV-41) Tokyo, Japan, September 5-7, 2016

NOAA Geostationary Satellite Programs Continuity of Weather Observations

Calendar Year GOES East GOES-14 On-orbit spare GOES West GOES-R GOES-S GOES-T GOES-U **Fiscal Year**

In orbit, operational	Planned On-orbit Storage
In orbit, storage	Test & Checkout
 Fuel-Limited Lifetime Estimate	Planned Mission Life

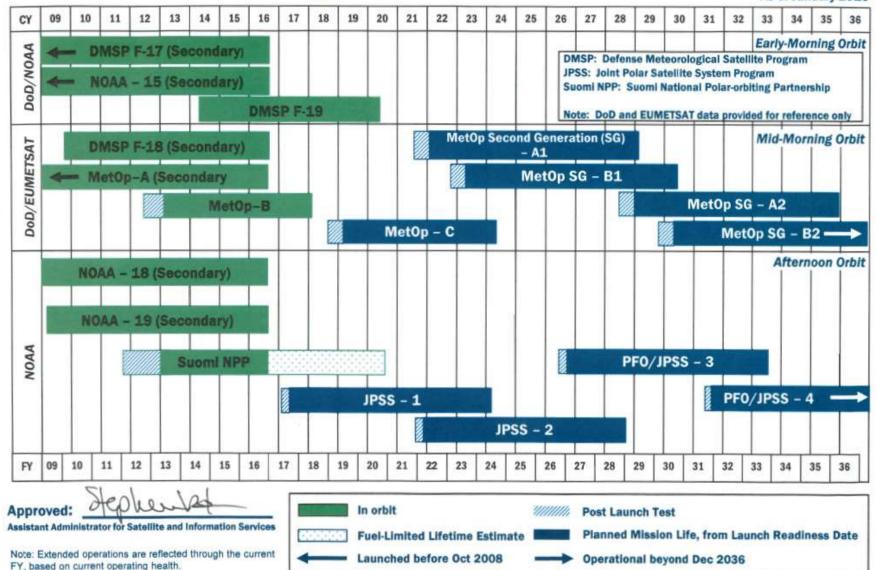
As of June 2016

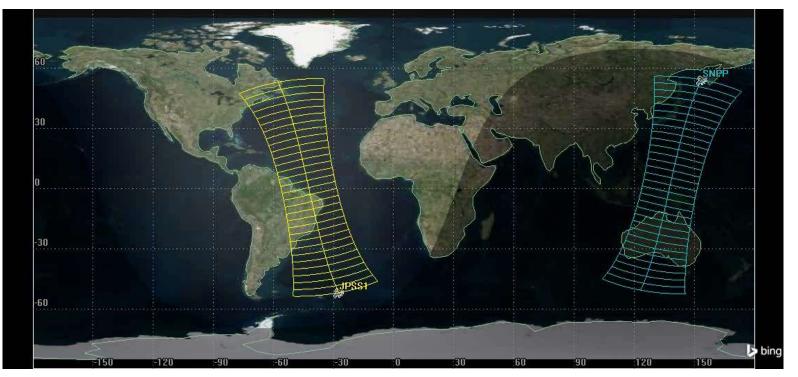
Images Courtesy: http://www.goes-r.gov/multimedia/roadToLaunch.html

- To be launched on Nov. 4, 2016 at Cape Canaveral Air Force Station, Florida
- Currently the spacecraft has been shipped to Florida
- Cal/Val teams are ready

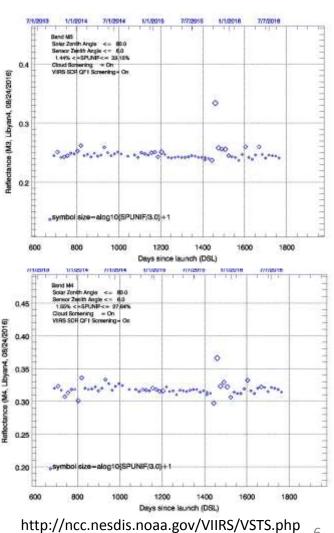
GOES-R

- The AHI data and collaboration with JMA has been very helpful
- NOAA is looking forward to the successful launch of GOES-R and the fruitful collaboration of CEOS and GSICS to support its mission




NOAA & Partner Polar Satellite Programs Continuity of Weather Observations

Getting Ready for J1



- Both J1 and SNPP on the same orbital plane
- Both have the same orbital equator crossing (~1:30 pm LTAN)
- ~50.75 mins separation: one is observing in day while the other is at night
- Ground track repeating cycle is 16 days for each, and 8 days when combined
- Improved temporal coverage (~50 mins interval around 1:30pm)

Support to WGCV PICS initiative

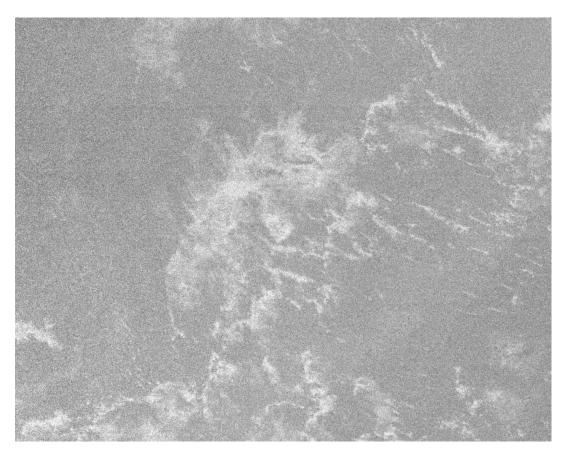
Actions:

- Questionnaire: Action assigned to <u>Sirish.Uprety@noaa.gov</u>, will complete by the deadline (<u>picscar@magellium.fr</u> before September 20th, 2016)
- 2. Data collection:
 - NOAA collects VIIRS RSB band over Libya 4 regularly. However, earlier data after launch had artifacts due to calibration changes
 - Reprocessing will produce a more consistent time series over Libya 4; Reprocessing using Ocean Color (with lunar) LUTs may further improve stability
 - Preliminary comparisons with other VIIRS processing (such as NASA LandSIPS) was also done
 - Action assigned to <u>Sirish.Uprety@noaa.gov</u> and <u>Wenhui.Wang@noaa.gov</u>
- 3. NOAA will provide the Libya 4 data collection, and hope to get feedback through collaboration

JPSS Annual Meeting Held at College Park, MD, Aug. 8-12, 2016

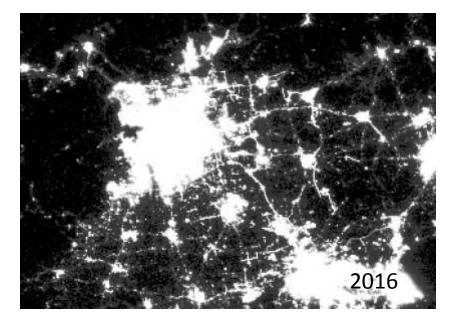
	Monday August 8		Tuesday August 9		Wednesday August 10		Thursday August 11				Friday August 23	
	Augusto	Session 3:	Session 4:	Session 5:	Session 6:	Session 7:	Session 8:	Session 9:	Session 10:	Session 11:	Session 12:	
830 - 1000		VIIRS SDR (Aud)	ATMS + CriS (Conf)	OMPS + Ozone (ESSIC)	Soundings (Aud)	Ocean Color (Conf)	Atmosphere (Aerosols, Clouds, Imagery) (ESSIC)	Land + Cryo (Aud)	SST (Conf)	Trace Gases (Sounders + OMPS) (Rm 2552)	GSICS (ESSIC)	Session 13: Users' Impact (Aud)
			Break		Break		Break				Break	
1030 - 1200		VIIRS SDR (Aud)	ATMS + CrIS (Conf)	OMPS + Ozone (ESSIC)	Soundings (Aud)	Ocean Color (Conf)	Atmosphere (ESSIC)	Land + Cryo (Aud)	SST (Conf)	Trace Gases (Sounders + OMPS) (Rm 2552)	GSICS (ESSIC)	Session 14: Wrap Up (Aud)
1200 - 1315			Lunch		Lunch		Lunch					
1315 - 1445	Session 1: Welcome & Opening Remarks (Aud)	VIIRS SDR (Aud)	ATMS + CrIS (Conf)	OMPS + Ozone (ESSIC)	Soundings (Aud)	Ocean Color (Conf)	Atmosphere (ESSIC)	Land + Cryo (Aud)	SST (Conf)	Trace Gases (Sounders + OMPS) (Rm 2552)	GSICS (ESSIC)	
1445 - 1530	Break		Poster 1			Poster 2			P	oster 3		
530 <mark>-</mark> 1700	Session 2: J1 Readiness (Aud)	VIIRS SDR (Aud)	ATMS + CrIS (Conf)	OMPS + Ozone (ESSIC)	Soundings (Aud)	Ocean Color (Conf)	Atmosphere (ESSIC)	Land + Cryo (Aud)	SST (Conf)	Trace Gases (Sounders + OMPS) (Rm 2552)	GSICS (ESSIC)	

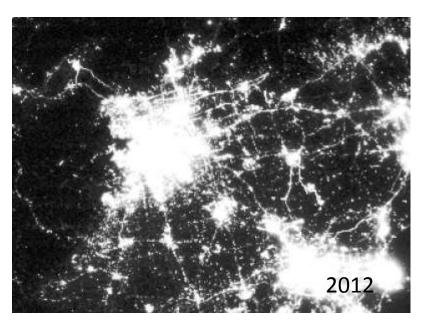
- Reprocessing is planned for all SNPP instruments; first priority is for the ATMS and CrIS sounders, then VIIRS and OMPS. Led by Fuzhong Weng
- For VIIRS, the initial one year of SNPP VIIRS SDR will be reprocessed by end of 2016

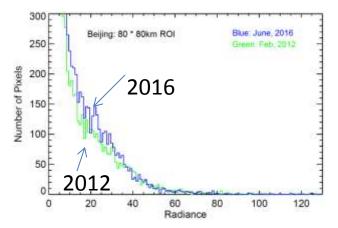

Improvement highlights in the reprocessing

- RSB band improvements
 - The reprocessing LUTs will correct up to 1.5% sudden changes caused by sudden H-factor updates, C0=0 update, and F-fast track to RSBAutoCal LUT transition.
 - » The unstable initial calibration LUTs will be updated.
 - » Ocean Color group RSB F-factor LUTs with Lunar correction will be tested for their 0.1~0.3% radiometric uncertainty.
- TEB band improvements.
 - » SST bias and TEB F-factor changes during the blackbody Warm-Up Cool-Down (WUCD) will be resolved for the reprocessing.
- DNB band improvements
 - » Reprocessing LUTs will correct radiometric calibration errors up to 5%.
 - Caused by the initial calibration changes, RSR update, and lunar eclipse anomaly.
 - » The new bias (DN0) LUTs will improve bias errors.
 - Using the VIIRS Recommended Operation Procedure (VROP) 702.
 - » The new stray light correction LUTs will correct the contaminated scenes before August 2013.
 - » Terrain correction in geolocation will be applied to data before 2014.

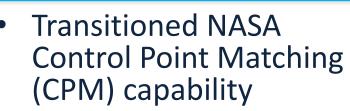
Dark Pacific Ocean for DNB calibration: How dark is dark?

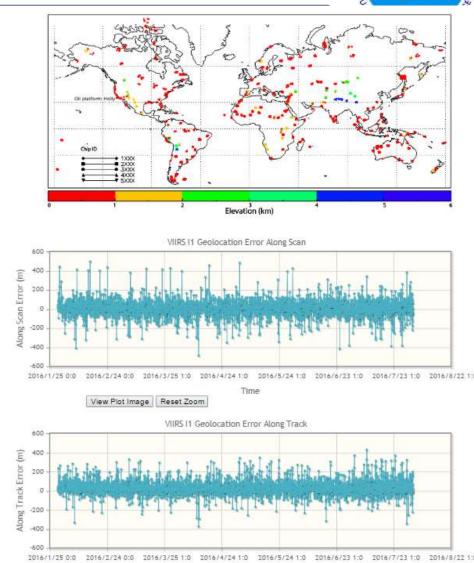

- VIIRS DNB dark offset is difficult to determine
- Even the darkest part of the ocean during new moon is not dark enough for DNB offset because of airglow
- Alternatives include using Blackbody but with increased complexity due to aggregation zones




Hunting for the darkest place on earth.

Why Calibration Reanalysis is important? (Example of urban growth)




•Beijing metropolitan area growth can be studied using the VIIRS Day/Night Band

- •Major changes in suburb areas are observed
- •Overall the light is > 9% brighter than four years ago
- •Major changes are at radiance levels about 20 nW/cm²-sr
- •However, the results highly relies on the calibration accuracy and consistency


Geolocation monitoring on the web

- » Landmark based geolocation monitoring
- » Landsat chips
- » Running on STAR server
- » Results automatically pushed to the web
- Added web interface and dynamic plotting
- Back-end DBMS support under testing

http://ncc.nesdis.noaa.gov/VIIRS/VIIRSGeoErrors.php

Summary

- GOES-R launch readiness
- VIIRS Reprocessing
 - » Calibration improvements in both RSB and TEB
 - » Scientists continue to explore the new capabilities of the DNB
- J1 ground process software testing in progress
- NOAA is supporting CEOS/WGCV PICS initiative
- Continue collaborating with GSICS
- S-NPP instruments are monitored in near real-time.
 - » NOAA Integrated Cal/Val System (ICVS) site at <u>http://www.star.nesdis.noaa.gov/icvs/status_NPP_VIIRS.php</u>
 - » Calibration information available at: <u>http://ncc.nesdis.noaa.gov/VIIRS/index.php</u>