Calibration, Validation, and Image Data Quality Control for KOMPSAT

September 6, 2016

DongHan Lee, DooChun Seo, DoChul Yang
HoRyung Jeong, DongHyun Kim, HaeJin Choi

Korea Aerospace Research Institute (KARI)
Space Program in Korea

Korea Aerospace Research Institute (KARI)
Satellite data Calibration and Validation team (SCV)

CEOS WGCV-41 (2016)
Cal/Val team in KARI

- Calibration/Validation/Evaluation collaboration including information related to Image Data Processing and Quality

- National Satellite Operation and Application Center in KARI (NSOAC)
Cal/Val team in KARI

Cal/Val

- Characterization
- Calibration & Validation
- Image data Restoration

- KOMPSAT-2, 3, 3A, 5
- GK2, CAS, KOMPSAT-6, 7
- Cal/Val site: Develop/Monitoring
- Cal/Val S/W, Equip.: Develop
- Abs. Radio. Cal. (3,3A,7,CAS,GK2)
- SAR Processor & Product Processor: Develop

Image Quality Control

- Image data Quality Monitoring / Improvement
- IQ (Image data Quality)
- QR (Quality Report)
- Image data Quality Enhancement
- Meeting with Users Group
- CEOS WGCV IVOS/SAR

Korea Aerospace Research Institute (KARI)
Satellite data Calibration and Validation team (SCV)
Cal/Val Preparation for EO (KOMPSAT-3, 3A, 7, CAS)

< Cal/Val Preparation for SAR (KOMPSAT-6) >
Please see the next presentation at CEOS WGCV SAR Workshop.
“KOMPSAT-6 Mission and External Calibration System Design” by Dochul Yang
Cal/Val Work Flow in KARI

Pre-Launch

On-Ground Verification & Characterization

Initial values define

Post-Launch

LEOP

IAC (In-Orbit Activation & Check)

Characterization

Calibration / Validation

Restoration in IRPE

Performance Validation

Update values and parameters of Satellite, Camera and Image data Product Processor

Life-Time

Performance monitoring

Re-Characterization Re-Calibration

Performance validation
Cal/Val Flow after Launch (EO, IR)

Characterization
- Dynamic range, PAN selection
- Noise (Random, Periodic, Non-Linearity)
- MTF, SNR, GSD
- Geo-accuracy

Cal/Val
- Decide TDI Gain, Equalization (Vp, HF NUC)
- OD, POD, AOCS on-orbit Cal.+PAD
- PSF, MTF

Restoration
- Equalization (LF NUC, Butting zone, Uniformity)
- Reduce Noise, MTFC
- Registration, Planimetric accuracy
- Geo-accuracy with IRPE
- DN to Radiance

Enhancement
- Linear Stretch
- Fusion (PAN Sharpening)
- User’s Application
KOMPSAT-3 Cal/Val work Flow in LEOP Example

- **Think line box**: Checking K3 Spec. value
- **Blue painted box**: Final Cal/Val work
- **Gray painted box**: @ IAC & @ Normal
- **Black box**: Radiometric Cal/Val
- **Green box**: Spatial Cal/Val
- **Blue box**: Geometric Cal/Val
KOMPSAT Cal/Val Target, Equipment

<table>
<thead>
<tr>
<th>Target</th>
<th>Cal/Val Parameter</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night Lamp</td>
<td>MTF, PSF</td>
<td>Portable</td>
</tr>
<tr>
<td>Star</td>
<td>MTF, PSF</td>
<td>Night</td>
</tr>
<tr>
<td>Tarp</td>
<td>Linearity, Radiometric</td>
<td>Portable</td>
</tr>
<tr>
<td>GCP DB</td>
<td>Pointing & Location accuracy</td>
<td>Korea, Mongol</td>
</tr>
<tr>
<td></td>
<td>KPADS, AOCS, Registration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mapping quality</td>
<td></td>
</tr>
<tr>
<td>MAP data</td>
<td>Pointing & Location accuracy</td>
<td>Korea, Mongol, Worldwide</td>
</tr>
<tr>
<td></td>
<td>KPADS, AOCS, Registration</td>
<td></td>
</tr>
<tr>
<td>Radiometric equipment</td>
<td>Spectro-radiometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sun-photometer</td>
<td>Portable</td>
</tr>
<tr>
<td></td>
<td>Multi-Filter Rotating Shadow band Radiometer</td>
<td>Portable</td>
</tr>
<tr>
<td></td>
<td>Ultraviolet Multi-Filter Radiometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature measurement equipments</td>
<td></td>
</tr>
<tr>
<td>Geometric equipment</td>
<td>GPS instrument</td>
<td>Portable</td>
</tr>
<tr>
<td></td>
<td>Total station</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Cal/Val Parameter</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imatest (MTF)</td>
<td>Commercial</td>
</tr>
<tr>
<td></td>
<td>ENVI, ERDAS (Remote Sensing S/W)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODTRAN (Atmospheric simulation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STK (Imaging Planning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matlab, Visual Studio (Developing Tool)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cal/Val SW</td>
<td>Develop</td>
</tr>
<tr>
<td></td>
<td>MTF Measurement SW</td>
<td>Develop</td>
</tr>
<tr>
<td>GRDB</td>
<td>Geometric Cal/Val site, Ortho image</td>
<td>Develop</td>
</tr>
<tr>
<td></td>
<td>MS SQL DBMS & Server+RAID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiance Map in Worldwide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiance prediction S/W for ICPS</td>
<td>Develop</td>
</tr>
</tbody>
</table>

CEOS WGCV-41 (2016)
Korea Aerospace Research Institute (KARI)
Satellite data Calibration and Validation team (SCV)
Cal/Val site for Geometric

Geometric Cal/Val Site

- Level 0 site
 - Geometric Calibration: Detector & Band distortion, Alignment, AOCS absolute calibration, Mapping accuracy
 - Accuracy < 3~10 cm, Mongolia, GoHeung, KimJe, SeoSan in Korea
- Level 1 site
 - Geometric validation: Location accuracy, Pointing accuracy
 - Accuracy < 5 m, Worldwide area: 50 sites
GRDB (Cal/Val Ground Reference DB)

- Geometric cal/val site
- Radiometric cal/val site
- Spatial cal/val site
KOMPSAT Cal/Val S/W

- Cal/Val S/W
 - Ground Reference DB
 - Cal/Val Image Plan
 - Data Processing Module
 - Characterization Module
 - Calibration Module
 - Validation Module
KOMPSAT Cal/Val S/W

Characterization Module
KOMPSAT Cal/Val S/W

Calibration/Validation Module

CEOS WGCV-41 (2016)
Korea Aerospace Research Institute (KARI)
Satellite data Calibration and Validation team (SCV)
Image Data Quality Control
Product Quality Checking for Users during Normal period

QR (Quality Report) for KOMPSAT-3 Image Data

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR No.</td>
<td>QR-K3-20130314-0001</td>
</tr>
<tr>
<td>User No.</td>
<td>SI</td>
</tr>
<tr>
<td>Product ID</td>
<td>K3_20130310175432_04341_19891327_L1R</td>
</tr>
<tr>
<td>S/W Version</td>
<td>PMS. V1.0.130306.001</td>
</tr>
<tr>
<td>Processing Date</td>
<td>2013-03-06</td>
</tr>
<tr>
<td>Processed By</td>
<td>KARI, Gil-Dong Hong</td>
</tr>
<tr>
<td>Anomalies Image</td>
<td></td>
</tr>
<tr>
<td>Dynamic range</td>
<td></td>
</tr>
<tr>
<td>Saturation</td>
<td></td>
</tr>
<tr>
<td>Abnormal Pixel (except Blooming)</td>
<td></td>
</tr>
<tr>
<td>Equalization: inter-Detector (NUC)</td>
<td></td>
</tr>
<tr>
<td>Pattern noise</td>
<td></td>
</tr>
<tr>
<td>Compression noise</td>
<td></td>
</tr>
<tr>
<td>Registration (MS-MS)</td>
<td></td>
</tr>
<tr>
<td>Registration (MS-PAN)</td>
<td></td>
</tr>
<tr>
<td>Location accuracy</td>
<td></td>
</tr>
<tr>
<td>Comments / Image chip</td>
<td></td>
</tr>
<tr>
<td>Review Date</td>
<td></td>
</tr>
<tr>
<td>Review Comments</td>
<td></td>
</tr>
</tbody>
</table>

- **Dynamic range**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Saturation**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Abnormal Pixel (except Blooming)**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Equalization: inter-Detector (NUC)**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Pattern noise**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Compression noise**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Registration (MS-MS)**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Registration (MS-PAN)**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected
- **Location accuracy**: Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected

Comments / Image chip

- Cloud, Water, Snow area: to be take off for constraints: saturation, compression, NUC and pattern noise

QR (Quality Report) is the Internal report in KARI to monitor the KOMPSAT-3 Product (Image data) Quality.
• Reducing the Noise from Feb. 2015 after applying the additional Cal/Val
• But, Compression noise is still high.
 ✓ Because User(reseller) can choose the Compression ratio and still use ‘5.5’ for MS image data.
Enhancement: K3 Digital Zooming

KOMPSAT-3
(70cm)

KOMPSAT-3
(50cm)
KARI in CEOS WGCV

- CEOS WGCV IVOS #22, #23, QA4EO 2009
- CEOS WGCV IVOS #26, 2014.06.04~06, CalTech, Pasadena in California (4 presentations)
- CEOS WGCV #38, 2014.09.30~10.3, NOAA, College Park in Maryland (2 presentations)
- CEOS WGCV IVOS #27, 2015.11.18~20, ONERA, France (2 presentations)
- CEOS WGCV SAR Workshop 2015, 2015.10.27~29, Geneva, Swiss, (1 presentation)