

→ RADAR VISION FOR COPERNICUS

Sentinel-1 Constellation

SAR Interferometry Pedermance Vermication Dirk Geudtner, Pau Prats, Nestor Yague-Martinz, Francesco De Zan, Helko Breit, Yngvar Larsen, Andrea Monti-Guaneri and Ramón Torres

Sentinel–1 Mission Facts

- Constellation of two satellites (A & B units)
- Sentinel-1A launched on 3 April, 2014 & Sentinel-1B on 25 April, 2016
- C-Band Synthetic Aperture Radar Payload (at 5.405 GHz)
- 7 years design life time with consumables for 12 years
- Near-Polar, sun-synchronous (dawn-dusk) orbit at 698 km
- 12 days repeat cycle (1 satellite), 6 days for the constellation
- 3 X-band Ground Stations (Svalbard, Matera, Maspalomas) + one planned for Inuvik, Canada + Collaborative Ground Segments
- On-board data latency (i.e. downlink):
 - max 200 min (2 orbits)
 - One orbit for support of near real time (3h) applications
 - Simultaneous SAR acquisition and data downlink for real time applications
- Optical Communication Payload (OCP) for data transfer via laser link with The GEO European Data Relay Satellite (EDRS)

Sentinel-1 SAR Imaging Modes

• SAR Instrument provides 4 exclusive SAR modes with different resolution and coverage

- Polarisation schemes for *IW*, *EW* & *SM*:
 - ✓ single pol: HH or VV
 - ✓ dual pol: HH+HV or VV+VH

• Wave mode (WV): HH or VV

- Interferometric Wide Swath (IW) mode
 for land & coastal area monitoring
- *Extra Wide Swath* (EW) mode for seaice monitoring and maritime surveillance
- Wave (WV) mode is continuously operated over open ocean
- SAR duty cycle per orbit:
 - ✓ up to 25 min in any imaging mode
 - ✓ up to 74 min in Wave mode

Mode	Incidence Angle	Single Look Resolution	Swath Width	Polarisation		
Interferometric Wide Swath (IW 1-3)	arometric Wide 30-42 deg. I (IW 1-3)		250 km	HH+HV or VV+VH		
Wave mode						
WV1	23 deg.	Range 5 m	20 x 20 km	HH or W		
WV2	36.5 deg.	Azimuth 5 m	Vignettes at 100 km intervals	at tervals		
Strip Map S1-S6	20-43 deg.	Range 5 m Azimuth 5 m	inge 5 m 80 km imuth 5 m			
Extra Wide Swath (EW 1-5)	20-44 deg.	Range 20 m Azimuth 40 m	400 km	HH3HV or VV+VH		

Sentinel-1 SAR TOPS Mode

- TOPS (Terrain Observation with Progressive Scans in azimuth) for Sentinel-1 Interferometric Wide Swath (IW) and Extra Wide Swath (EW) modes
 - ScanSAR-type beam steering in *elevation* to provide large swath width (IW: 250km and EW: 400km)
 - Antenna beam is steered along *azimuth* from *aft* to the *fore* at a constant rate
 - All targets are observed by the entire azimuth antenna pattern *eliminating scalloping effect* in ScanSAR imagery
 - ✓ Constant SNR and azimuth ambiguities
 - \checkmark Reduction of azimuth resolution due to decrease in dwell time
 - Sentinel-1 IW TOPS mode parameters: ±0.6° azimuth scanning at Pulse Repetition Interval with step size of 1.6 mdeg.

Duration of IW bursts:

IW1: 0.8s IW2: 1.06s IW3: 0.83s

Sentinel-1A Mission Status

- Sentinel-1A launched on 3 April, 2014 on Soyuz from Kourou
- Nominal orbit reached on 7 August, 2014
- Sentinel-1A In-Orbit Commissioning completed on 23 Sept., 2014
- 12 orbit collision avoidance manoeuvres up to now
- 1 Electronic Front End (EFE) failure (out of 140)
 ⇒ negligible impact on overall radiometric (image) performance
- Data access (Raw, SLC, GRD data products) opened to all Users, worldwide, on 3 October, 2014
- EC Copernicus services, in particular the Marine and Emergency services operationally use Sentinel-1A data
- Sentinel-1B launched on 25 April, 2016

Sentinel-1A Observation Scenario regularly published online

SENTINEL-1A - OBSERVATION SCENARIO 30.09.2015 - 12.10.2015 (CYCLE 60)

Acquisition Segments

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/observation-scenario/acquisition-segments Pernicus https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/observation-scenario

Sentinel-1A Observation Scenario Tectonic and Volcanic Areas

- All Land and Ice masses systematically provided as IW SLC data products
- Includes all global tectonic/volcanic areas
- About 1.4 TB of IW SLC data available daily

- BLUE: Acquisitions in *IW dual pol* mode, *VV+VH* polarisation, every 12 days ascending and descending
- BLACK: Acquisitions in *IW* mode, *VV* polarisation, every 12 days ascending <u>or</u> descending; repeat on the same track every 24 days
- Stripmap mode (SM) acquisitions over selected small volcanic islands
- Increased sampling density over supersites outside Europe
- About one third of global landmass regularly covered, based on this acquisition strategy

Sentinel-1A IW Mode D-InSAR Earthquake Surface Deformation Mapping

M7.8 Nepal earthquake on April 25th, 2015 Sentinel-1A IW (TOPS) mode acquisitions on 17 & 29 April, 2015

M8.3 Chile earthquake on Sept. 16th, 2015 Sentinel-1A IW (TOPS) mode acquisitions on 24 August & 17 September, 2015

Images courtesy: Contains Copernicus data (2015)/ESA/DLR Microwaves and Radar Institute/GFZ/e-GEOS/INGV-ESA SEOM INSARAP study

Sentinel-1B Status

- Sentinel-1B launched on 25 April, 2016 on Soyuz from Kourou, French Guyana
- Very good injection orbit with a semi-major axis
 1.9 km higher than reference orbit with an initial orbital drift of 2.1 deg./per day
- \Rightarrow optimal situation to reach the orbital node of 180° phased with Sentinel-1A
- LEOP completed in less than three days as planned (25-28 April), including:
 - critical deployment of Solar Panels and SAR Antenna
 - SAR payload switched on and checked out
 - First SAR image acquisition as part of instrument check-out
- Commissioning started on 29 April, including spacecraft and SAR calibration activities, and will be completed by 14 September, 2016 (IOCR)

Sentinel-1B Reference Orbit Acquisition and Phasing with Sentinel-1A

Sentinel-1A/B Cross-SAR Interferometry

12-day repeat orbit cycle for each satellite \Rightarrow Formation of InSAR data pairs with 6-day intervals

S-1A image: acquired on 10 June, 2016 S-1B image: acquired on 16 June, shortly after Sentinel-1B reached its designated orbital node phased 180° with Sentinel-1A

- Perpendicular Baseline: 54m
- Burst Synchronization: < 1.7ms

Long S-1A – S1B cross-interferogram demonstrates compatibility of both SAR instruments

Images courtesy: P. Prats, N. Martinez, DLR

Datatake Start Time Estimation for Burst Synchronization – Position-tag Commanding

 Data acquisition (repeat orbit cycle) over the same ground location uses on On-board Position Schedule execution (OPS) based on Orbit Position angle (instead of timing)

esa

Sentinel-1B Burst Synchronization Results

Estimation of along-track burst synchronization at :

- Scene (slice)-level
- Long Datatake-level
- Sentinel-1A/Sentinel-1B InSAR data pairs

Using:

- Orbital state vectors (POD, restituted orbits)
- Annotated raw start azimuth time (sensing time) of the bursts
- Fine Co-registration using cross-correlation and Extended Spectral Diversity (ESD) techniques

Burst Synchronization: Scene-Level

Sentinel-1B/-1B InSAR pair

Sentinel-1A/-1B InSAR pair

Salar de Uyuni Scene

		IW1	IW2	IW3	IW1	IW2	IW3
	Burst Synchronization variation [ms]	-0.15	-0.15	-0.15	0.0	0.0	0.0
	Burst Synchronization (ground) variation [m]	-1.05	-1.02	-1.00	0.0	0.0	0.0

Burst Synchronization: Datatake-Level

Sentinel-1B/-1B InSAR pair

Burst Synchronization variation [ms]

Burst Synchronization (ground)

variation [m]

IW1

1.01

6.86

IW2

1.03

7.01

IW₃

1.04

7.01

Sentinel-1A/-1B InSAR pair

IW1

0.90

6.14

IW2

0.91

6.18

IW3 0.89

6.04

China DT

15

Burst (Mis) Synchronization vs Doppler Centroid Difference & Common Doppler Bandwidth

Mean Doppler Centroid Frequency Difference

Sentinel-1B/Sentinel-1B InSAR pairs

Sentinel-1A/Sentinel-1B InSAR pairs

Antenna (Mis) Pointing (squint) vs effective Doppler Centroid Difference

Doppler centroid difference Δf_{DC}

Mean Doppler Centroid Frequency Difference & Common Doppler Bandwidth

Sentinel-1B/Sentinel-1B InSAR pairs

Sentinel-1A/Sentinel-1B InSAR pairs

Sentinel-1 Orbital Tube and InSAR Baseline

- Sentinel-1 A & B are kept within an Orbital Tube around a Reference Mission Orbit (RMO)
- Initially specified *Orbital Tube* radius of 50 (rms) \Rightarrow equivalent to *Ground-track* dead-band of 60m
- During Sentinel-1A Commissioning: Relaxation of *Ground-track* dead-band to 120m remains
- \Rightarrow Orbital Tube radius of better than 100 (rms)

S1A/S1B perpendicular Baseline for IW and EW data stack

Results of Italy Earthquake

- M 6.2 central Italy earthquake on 24 August 2016 at 03:36:32 CEST
- Sentinel-1A and Sentinel-1B IW data pairs acquired on 20 & 26 Aug. and 21 & 27 Aug. for generation of coseismic differential interferograms

effective baseline: 28.1 m mean Doppler frequencies: 110 Hz (S1B) & 54 Hz (S1A) burst mis-synchronization: 3.12 ms

22

Conclusions

- Sentinel-1 acquires systematically and provide routinely SAR data for operational monitoring tasks for Copernicus and national EO services
- Using the same SAR imaging mode (instrument settings), *e.g. IW mode,* enables the build-up of *long data time series* for continuous observations with *equidistant* and *short time intervals* (*interferogram stacks*)
- Sentinel-1 A & B fly in the same orbital plane with 180 deg. phased in orbit, each with 12-day repeat orbit cycle
 ⇒ Optimization of coverage offering global revisit time of 6-days
 - \Rightarrow Formation of InSAR data pairs with 6-day intervals
- Small orbital tube with R < 100m (rms) provides small InSAR baselines
 Differential InSAR for surface deformation monitoring
- Accurate TOPS burst synchronization + small Doppler centroid differences for S-1A and S-1B InSAR pairs, but requires improvement for S-1A/S-1B
 ⇒ Large common Doppler bandwidth = optimal azimuth spectral alignment
- ⇒ Excellent performance for wide-area (250km) SAR + InSAR mapping opernicus

Sentinel-1 E

Thank you for your attention.

- Mission Facts and Objectives
- Overview of SAR Imaging Modes, with focus on novel TOPS mode
- Sentinel-1A Mission Status
- SAR Instrument Overview
- Methods for and Results from Sentinel-1A Calibration
- TOPS mode InSAR performance
- Sentinel-1B Mission Status
- Conclusions

Sentinel-1 Mission Objectives

- Acquire systematically and provide routinely SAR data to operational *Copernicus* and *National services* focussing on specific applications:
 - ✓ Monitoring of marine environment (e.g. oil spills, sea ice zones)
 - Surveillance of Maritime Transport Zones (e.g. European and North Atlantic zones)
 - ✓ Land Monitoring (e.g. land cover, surface deformation risk)
 - Mapping in support of crisis situations (e.g. natural disasters and humanitarian aid)
 - ✓ Monitoring of Polar environment (e.g. ice shelves and glaciers)

Oil spill monitoring

Ship detection

Flood monitoring

Sea ice mapping

Ice sheet velocity

Surface deformation

Land cover mapping

Sentinel-1 IW TOPS InSAR

Repeat-pass TOPS InSAR using Interferometric Wide Swath (IW) data pairs worked on the 'spot'

S-1A IW interferogram of data pair acquired 7-19 August, 2014 (2π height = 128.82m)

Verification of:

- SAR instrument phase stability
- Satellite on-board timing and GNSS solution to support *position-tagged commanding*
- Mission Planning system using *TOPS cycle time grid points* for datatake start time estimation
- Stable antenna pointing
- Accurate orbit control (orbital tube)

Sentinel-1A IW Mode D-InSAR Earthquake Surface Deformation Mapping

M7.8 Nepal earthquake on April 25th, 2015 Sentinel-1A IW (TOPS) mode acquisitions on 17 & 29 April, 2015

M8.3 Chile earthquake on Sept. 16th, 2015 Sentinel-1A IW (TOPS) mode acquisitions on 24 August & 17 September, 2015

Images courtesy: Contains Copernicus data (2015)/ESA/DLR Microwaves and Radar Institute/GFZ/e-GEOS/INGV-ESA SEOM INSARAP study

Sentinel-1B First Image

- Acquired on 28 April, 2016 as part of SAR instrument check-out just 2 hours after switch-on (54 hours after lift-off)
- Interferometric Wide Swath (IW) mode image (250km swath width) showing Svalbard, the Norwegian archipelago in the Arctic Ocean and Austfonna glacier

Sentinel-1 InSAR TOPS Image Co-Registration

- Antenna squint in Stripmap image pairs induces linear phase ramps in the Impulse Response Function (IRF) ⇒ small co-registration error causes InSAR phase offset
- TOPS mode: Azimuth InSAR phase ramp (azimuth fringes) introduced due to small co-registration errors (Δt) and Doppler centroid variations of about 5.2 kHz

esa