

ACIX Atmospheric Correction Inter-comparison eXercise

Eric Vermote | NASA, <u>eric.f.vermote@nasa.gov</u> Georgia Doxani | Serco for ESA/ESRIN, <u>Georgia.Doxani@esa.int</u> Ferran Gascon | ESA/ESRIN, <u>Ferran.Gascon@esa.int</u> Jean-Claude Roger | University of Maryland/NASA, jean-claude.roger@nasa.gov

- <u>What?</u>

- International collaborative initiative to inter-compare a set of atmospheric correction (AC) processors for highspatial resolution optical sensors
- Focus on Landsat-8 and Sentinel-2 imagery

 Better understanding of the different uncertainty contributors and help in improving the AC processors

- <u>Why?</u>

 Free and open access policy to Landsat-8 and Sentinel-2 imagery has stimulated the development and operational use of AC processors for generating Bottom-of-Atmosphere (BOA) products

- ACIX results are expected to point out:
 - strengths & weaknesses
 - commonalities & differences
 - of **AC processors** for their further improvement

- <u>How?</u>

ACIX will be performed in **three** phases:

1. <u>Definition of the inter-comparison protocol</u>:

Participants are invited to provide their feedback on the suggested protocol for the AC processors inter-comparison. All the proposals will be discussed at the 1st workshop and the final inter-comparison procedure will be agreed by all participants.

2. <u>Application of the AC processors</u>:

Participants will apply their AC schemes for a set of test sites keeping the processing parameters constant. The results will be submitted for analysis to ACIX coordinators.

3. <u>Analysis of the results</u>:

ACIX coordinators will process the results submitted by all participants and will assess the inter-comparison outputs based on the agreed metrics. All the results will be presented and discussed during the 2nd ACIX workshop.

- When?

Important Dates	
1st Workshop Announcement	25 January 2016
1 st Workshop Registration Deadline	15 March 2016
1st Workshop Preliminary programme	30 April 2016
Proposals for AC inter-comparison protocol Deadline	31 May 2016
1st Workshop of CEOS-WGCV Atmospheric Correction Inter-comparison Exercise	21-22 June 2016
Results Submission Deadline	15 October 2016
Results Analysis Report	15 December 2016
2nd Workshop of CEOS-WGCV Atmospheric Correction Inter-comparison Exercise	1 st quarter of 2017

- <u>Who?</u>

- 14 atmospheric correction processors
- 15 organisations, institutes, universities, companies
- 5 countries: Australia, Belgium, France, Germany, USA

Registered Participants						
Name		Organization/ Company	AC Processor	Country	Input Data	
1	Eric, VERMOTE Jean-Claude, ROGER	NASA, Maryland University	L8SR, name of S-2 TBD	USA	Landsat-8 & Sentinel-2	
2	Jerome, LOUIS	Telespazio France	Sen2Cor	France	Sentinel-2	
3	Pflug, BRINGDRIED	DLR - German Aerospace Center	Sen2Cor, ATCOR	Germany	Landsat-8 & Sentinel-2	
4	André, HOLLSTEIN	Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ	SCAPE-M	Germany	Sentinel-2	
5	Oleg, DUBOVIK	LOA, University of Lille -1	GRASP	France		
6	Steven, ADLER-GOLDEN	Spectral Sciences, Inc.	FLAASH	USA	Landsat-8 & (probably) Sentinel-2	
7	Larry, LEIGH	South Dakota State University	SMACAA	USA	Landsat-8 & (probably) Sentinel-2	
8	Erwin, WOLTERS Sterckx, SINDY	VITO	<u>OPERA</u> (An Operational Atmospheric Correction for Land and Water)	Belgium	Landsat-8 & Sentinel-2	
9	Quinten, VANHELLMONT Kevin, RUDDICK	Royal Belgian Institute for Natural Sciences	ACOLITE	Belgium	Landsat-8 & (most probably) Sentinel-2	
10	Antoine, MANGIN	ACRI-HE	LAC (for Land Atmospheric Correction)	France	Landsat-8 & Sentinel-2	
11	Olivier, HAGOLLE	CNES	MACCS	France	Landsat-8 & Sentinel-2	
12	Fuqin, LI Lan-Wei, WANG	Geoscience Australia	GA-PABT	Australia		
13	David, FRANTZ	Trier University	Ind-prepro	Germany	Landsat-8 & Sentinel-2	
14	Grit, KIRCHES	Brockmann Consult	TBD	Germany	Landsat-8 & Sentinel-2	

DATA Format						
Name		Organization / Company	AC Processor	Input Data	Output Format	
4	Eric, VERMOTE	NASA / UMd	L8SR, S2SR	L8 & S2		
1	Jean-Claude, ROGER				HDF (*.hdf)	
2	Jerome, LOUIS	Telespazio	Sen2Cor	S2	JPEG2000 (*.jp2)	
3	Pflug, BRINGDRIED	DLR	Sen2Cor, ATCOR	L8 & S2	ENVI (*.hdr)	
4	André, HOLLSTEIN	GFZ	SCAPE-M	S2	JPEG2000 (*.jp2)	
5	Oleg, DUBOVIK	LOA,	GRASP		N/A	
6	Steven, ADLER- GOLDEN	Spectral Sciences, Inc.	FLAASH	L8 & (probably) S2	N/A	
7	Larry, LEIGH	SDSU	SMACAA	L8 & (probably) S2	N/A	
8	Erwin, WOLTERS	VITO	OPERA	L8 & S2	GeoTif (*.tif)	
	Sterckx, SINDY					
9	VANHELLMONT	RBINS	ACOLITE	18 & (probably) S2	NetCDE GeoTiff (* nc * tif)	
9	Kevin, RUDDICK		ACOLITE	20 Q (probably) 52		
10	Antoine, MANGIN	ACRI-HE	LAC	L8 & S2	N/A	
11	Olivier, HAGOLLE	CNES	MACCS	L8 & S2	N/A	
10	Fuqin, Ll		GA-PABT			
12	Lan-Wei, WANG	Geoscience Australia			ENVI (*.hdr)	
13	David, FRANTZ	Trier University	Ind-prepro	L8 & S2	ENVI (*.hdr)	
14	Grit, KIRCHES	Brockmann Consult	TBD	18 & 52	GeoTif (* tif)	

- Where?

1st ACIX workshop (21-22 June 2016) venue:

College Park Marriott Hotel & Conference Center

2nd ACIX workshop venue:

At ESRIN during 1st quarter 2017

- Outcomes of the 1st workshop
- Definition of the protocol and procedures for intercomparing products
- Definition of test regions and time periods for quality assessment
- Description of a coordinated plan for inter-comparison activities

What should be included in atmospheric correction ?

>> Mandatory run:

- Rayleigh and aerosol scattering
- gas absorption
- adjacency effects (if it cannot be turned off)

>> Optional run:

Including any other correction, e.g.:

- BRDF correction
- adjacency effects
- topography effects
- sun glint effects (over water-surface)
- cirrus/haze correction

Sample results were submitted by 15/7/2016

TEST SITES		Zone	Land Cover	AERONET station
				Lat, Lon
	Frioul [France]	MidlatitudeN	vegetated, bare soil, coastal	43.266, 5.293
	Davos [Switzerland]	Boreal	forest, snow, agriculture	46.813, 9.844
erate	Beijing [China]	MidlatitudeN	urban, mountains	39.977, 116.381
	Canberra [Australia]	MidlatitudeS	urban, vegetated, water	-35.271, 149.111
amp	Pretoria_CSIR-DPSS [South Africa]	SubTropicalS	urban, semi-arid	-25.757, 28.280
Ĕ	Sioux_Falls [USA]	MidlatitudeN	cropland, vegetated	43.736, -96.626
	GSFC [USA]	MidlatitudeN	urban, forest, cropland, water	38.992, -76.840
	Yakutsk [Russia]	Polar	forest, river, snow	61.662, 129.367
-	Banizoumbou [Niger]	Tropical	desert, cropland	13.541, 2.665
Ario	Capo_Verde [Capo Verde]	SubTropicalN	desert, ocean	16.733, -22.935
	SEDE_BOKER [Israel]	MidlatitudeN	desert	30.855, 34.782
torial est	Alta_Floresta [Brazil]	Tropical	cropland, urban, forest	-9.871, -56.104
Equat	ND_Marbel_Univ [Philippines]	Tropical	cropland, urban, forest	6.496, 124.843
Boreal	Rimrock [USA]	Boreal	semi-arid	46.487, -116.992
	Thornton C-power (Belgium)	Boreal	water, vegetated	51.532, 2.955
ites	Gloria [Romania]	MidlatitudeN	water, vegetated	44.600, 29.360
stal 9	Sirmione_Museo_GC (Italy)	Boreal	water, vegetated , urban	45.500, 10.606
Coas	Venice (Italy)	Boreal	water, vegetated , urban	45.314, 12.508
	WaveCIS (USA)	SubTropicalN	water, vegetated	28.867, -90.483

Time period for the input data availability

Landsat-8 data: 1/6/2015 – June 2016

Sentinel-2 data: 1/10/2015 – June 2016

AERONET lev 1.5 data (Version 2 Direct Sun Algorithm): 1/6/2015 – June 2016

Aerosol Validation

Water Vapour Surface Reflectance

- Aerosol Validation

Comparison between resulted AOT & Level 1.5 (cloud screened) AERONET data

- **1.** Interpolate AERONET values @ λ =550 nm using the Angstrom Exponent
- 2. Average AERONET values over time period of 30min from AOT retrieved values (image acquisition time)
- **3.** Average AOT values over an image subset of 9 km x 9 km centred on the AERONET Sunphotometer station

Visualization of Inter-comparison Results

- Scatter plots per date and method
- Time series plots of the submitted AOT values (y axis) against AERONET (x axis)

- Aerosol Validation

Plot	X axis	Y axis	Plot Example		
#1: One plot per test site for all the AC processors (including the AERONET value)	Dates	AOT results	Site 1 0.027 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.057 0.056 0.057 0.057 0.057 0.056 0.057 0.057 0.056 0.057 0.056 0.057 0.057 0.056 0.057 0.057 0.057 0.057 0.057 0.057 0.056 0.057 0		
#2: One plot per AC processor & test site	AERONET measurements	AOT results	AC Processor 1		
#3: One plot per AC processor for all the test sites	AERONET measurements	AOT results	AC Processor 1 0.07 0.05 0.05 0.04 0.05 0.5 0.		

- Plots including cloudiness

Comparison by statistical analysis of difference |retrieval – reference|

- > One table per processor
- Table subdivided by cloudiness, zone and test site

		Sen2Cor AOT (20m) - Reference AOT				
• \ •	No. of samples	Min	Mean ± rms	Max		
Cloudiness	<65%					
Boreal	1	0.035	0.035	0.035		
subtropical N	7	0.036	0.226 ± 0.140	0.480		
Tropical	3	0.016	0.158 ± 0.215	0.405		
Midlatitude S	3	0.122	0.222 ± 0.088	0.282		
Total	14	0.016	0.197 ± 0.142	0.480		
Cloudiness	<5%	and	"No DDV" excluded			
Boreal	1	0.035	0.035	0.035		
Tropical	2	0.016	0.034 ± 0.026	0.053		
Total	3	0.035	0.035 ± 0.019	0.053		

Aerosol Validation Water Vapour Surface Reflectance

- Inter-comparison of the BOA products

>> Visualization of Inter-comparison Results

- **Histograms** per date, band and AC approach
- Profile plots across the images per date, band and AC approach
- Time series plots of the estimated Surface Reflectance
- >> NDVI calculation and comparison: indicator for relative inter-band differences

>> Quantification of Inter-comparison Results

 Distance matrix N x N >> N = AC processors, d = normalized distances between the resulting BOA values of a 9 km x 9 km subset averaged over the available dates

	AC Processor 1	AC Processor 2	AC Processor 3	 AC Processor n
AC Processor 1	0	d ₁₂	d ₁₃	 d _{1n}
AC Processor 2	d ₂₁	0	d ₂₃	 d ₂₁
AC Processor 3	d ₃₁	d ₂₁	0	 d _{3n}
AC Processor n	d _{n1}	d _{n2}	d _{n3}	 0

- Comparison with AERONET corrected data

- >> Atmospherically corrected data will be generated by a radiative transfer model, like libRadtran or 6S, using AERONET data
- >> Pixel-by-pixel comparison between each of the spectral bands and the corresponding AERONET corrected surface reflectance data will be done for all the 9 km × 9 km subsets
- >> Only the non-saturated, non-cloudy and non-missing pixels will be considered in the comparison (**Quality flags** will be provided by the participants)

- Comparison with AERONET corrected data

$$\Delta \rho_{\iota,\lambda}^{SR} = \rho_{\iota,\lambda}^{SR_{PROCESSOR}} - \rho_{\iota,\lambda}^{SR AERONET}$$
(1)

The statistical metrics accuracy, precision and uncertainty (RD1, RD2) will be then estimated:

- Accuracy (A):
$$A = \frac{1}{n_{\lambda}} \left(\sum_{i=1}^{n_{\lambda}} \Delta \rho_{i,\lambda}^{SR} \right)$$
(2)

- Precision (P):
$$P = \sqrt{\frac{1}{(n_{\lambda}-1)} \left(\sum_{i=1}^{n_{\lambda}} \Delta \rho_{i,\lambda}^{SR} - A \right)^2}$$
(3)

Uncertainty (U) and relative uncertainty (rU):

$$U = \sqrt{\frac{1}{n_{\lambda}} \sum_{i=1}^{n_{\lambda}} (\Delta \rho_{i,\lambda}^{SR})^2} \quad (4) \qquad \qquad rU = \frac{U}{\overline{\rho}_{\lambda,AERONET}^{SR}} \quad (5)$$

MODIS COLLECTION 5: accuracy or mean bias (red line), Precision or repeatability (green line) and Uncertainty or quadratic sum of Accuracy and Precision (blue line) of the surface reflectance in band 1 in the Red (left), band 2 in the Near Infrared (right) also shown is the uncertainty specification (the line in magenta), that was derived from the theoretical error budget. Data collected from Terra over 200 AERONET sites from 2000 to 2009.

ratio band3/band1 derived using MODIS top of the atmosphere corrected with MISR aerosol optical depth

MODIS COLLECTION 6: accuracy or mean bias (red line), Precision or repeatability (green line) and Uncertainty or quadratic sum of Accuracy and Precision (blue line) of the surface reflectance in band 1 in the Red (left), band 2 in the Near Infrared (right) also shown is the uncertainty specification (the line in magenta), that was derived from the theoretical error budget. Data collected from Terra over 200 AERONET sites for the whole Terra mission.

- Comparison with MODIS (MOD09CMG) daily SR products

- >> Pixel-by-pixel comparison between each of the spectral bands and the corresponding most similar MODIS band. Due to the different satellite orbits, the direct comparison of the SR could deliver misleading results. Therefore, the adjustment of MODIS bidirectional reflectance distribution function to the corresponding Landsat-8 and Sentinel-2 sun and view geometry is required.
- >> Same metrics as before (*residuals, accuracy, uncertainty, etc.*)

CMG MODIS product

NDVI aggregated at **CMG resolution**. summer crops (maize-soy)

Temporal information is now available at the field level

Sentinel-2A image acquired on 04-Dec-15, 10m, true color B04-03-02 (SR, scaled 0-

Landsat-8 image acquired on 04-Dec-15, 30m, true color B4-3-2 (SR,

MOD09GQ image acquired on 04-Dec-15, 250m, false color B2-1-1, SR

Sentinel-2A image acquired on 23-Jan-16, 10m, true color B04-03-02 (SR, scaled 0-0.15)

16, 30m, true color B4-3-2 (SR, scaled 0-0.15)

0.14

0.12

0.1

80.0

0.06

0.04

0.02

0

Thank you for your attention!

ACIX website: https://earth.esa.int/web/sppa/meetings-workshops/acix