Rainfall and PET

University of Oklahoma/HyDROS
Module 2.3
EF5 OVERVIEW
DEM DERIVATIVES
RAINFALL AND PET

- Satellite meteorology
- TMPA data
- PET data
- Visualize rainfall and PET grids
- Prepare EF5 to use example rainfall and PET grids

AUTOMATIC CALIBRATION
We need observations of the rain that is falling so our model can produce runoff in response to the rain

- We call this rainfall “forcing”

Rainfall is typically measured using rain gauges (point measurements), but we are using distributed hydrological models so we need distributed rainfall information.

Satellites to the rescue! Satellites can see clouds, cloud top temperatures and in some cases cloud structures.
Two ways for satellites to observe rainfall information

Passive

Instrument is only receiving information; think of this as being in a well lit room

Infrared measurements from GEO satellites or microwave measurements from LEO satellites (TRMM Microwave Imager)

Active

Instrument transmits information and then receives information in return; think of this as using a flash light in a dark room so you can see

Examples include precipitation radar on TRMM, GPM
Passive measurements can occur over many wavelengths; this reveals different information in each spectrum

Infrared spectrum is used to derive cloud top temperatures
Then other relationships relate cloud top temperatures to rain rates
Passive measurements can occur over many wavelengths revealing different information in each spectrum.

- Multi-channel microwave measurements to see through cloud layers
- More complicated relationships between brightness temperatures and rain rates
- TRMM calibrates microwave measurements to precipitation radar measurements

[Image: Typhoon Nesat Threatens the Philippines]
Measurements made on geosynchronous satellites

Pros:
• Rapid updates (~1-15 minutes)
• Good resolution (~1-4 km²)
• Good coverage (nearly global)

Cons:
• Cannot see through clouds
• Precipitation may not be reaching the ground!
Measurements made on low Earth orbit satellites

Pros:

• Multiple wavelength measurements can often measure through clouds to the ground
• Better resolution (<1 km2)

Cons:

• Long revisit time (~hours to days)
• Incomplete global coverage
• Narrow swaths
Let’s combine LEO and GEO measurements!

Tropical Rainfall Measurement Mission – Multi-Satellite Precipitation Analysis (TMPA)

Uses many passive microwave satellites with probability-matching to the core TRMM satellite

Gaps in LEO satellite coverage filled with data from GEO satellites
TRMM Multisatellite Precipitation Analysis

TRMM stands for Tropical Rainfall Measurement Mission. Available every 3-hours, on a 0.25° x 0.25° grid from 50°N to 50°S. Also known as "TRMM RT" or "TRMM real-time"
Alternatives to “real time” data

If you are doing historical work and want better precipitation estimates, there is a gauge-corrected TMPA product available. 3-hourly estimates summed to monthly, rain gauge data accumulated on 1° x 1° grid for a month (TMPA bias-adjusted and 3-hourly products are rescaled).

Also known as “TRMM V6” or “TRMM V7”
So how do you get TMPA data?

NASA’s servers

Real time feed:

Older data:

Gauge corrected product:
“Forcing” isn’t just precipitation – the model also needs to know how much water is lost to the atmosphere due to evaporation and transpiration.

Important for droughts and water resources management

- Not so important for rainfall-driven flooding events
- We prefer to use monthly averages because this greatly reduces data requirements for running hydrological models
- This means one set of 12 files (one for each month) fulfills the PET requirement for running the model anywhere in the world
We use global monthly mean PET

- They cover the world, from -180 to +180 degrees longitude, and from -90 to +90 degrees latitude
- The daily PET is calculated on a spatial basis using the Penman-Monteith equation
- Then this data is standardized in accordance with the Food and Agriculture Organization’s published research
- The actual data is produced by the U.S. Geological Survey and the U.S. Agency for International Development

http://earlywarning.usgs.gov/fews/downloads/
Open QGIS and go to “Layer” → “Add Layer” → and “Add Raster Layer…”

Navigate to \EF5_training\data\PET and add test_pet.asc
Visualizing Precipitation and PET

Now from \EF5_training\data\TRMM add test_trmm.asc
You can right-click on either layer, select “Properties” and then in the “Style” tab, select “Singleband pseudocolor”.

Play around with the color options until you feel comfortable that you can tell what’s happening in both the precipitation and PET grid.
Think of looking at the PET as a sort of “sanity check”

This is a grid from January, summer in the Southern Hemisphere, so the sun angle is higher there and PET should be higher, too

Sure enough, that’s what I see

You can use the “Identify Features” tool to click around and prove it to yourself, if you want →
You can also play with the colors in the precipitation file.

I right-clicked and selected “Properties”.

Then I used a yellow-green “YlGn” color map, and right-clicked on the color for values of 0.000000.

You can turn “Opacity” to “0%” so that the areas where precipitation is zero disappear from the map.
And here’s the final result:

Looks like what we would expect precipitation systems to look like, so that’s a good thing!
Let’s get our precipitation and PET data ready for use in the Bogota River example.
In `\EF5_training\data\PET`, you have a file called `bibimo.zip`.

- Right-click, and click “Extract All…”
- Extract to `\EF5_training\examples\example2\pet`
Unzip Precipitation and PET

You should see this pop up after the unzip process is complete:
In `\EF5_training\data\TRMM`, you have a file called `trmm2002.zip`

- Right-click, and click “Extract All…”
- Extract to `\EF5_training\examples\example2\precip`
- This process can take a while
You should see this pop up after the unzip process is complete:
Open control.txt in EF5_training \examples\example2

In the PrecipForcing block, we see

- The name of the block is TRMM
- TYPE is TRMMRT (This depends on what type of precipitation you’re using, so if you use the gauge-corrected TRMM data instead, you would put TRMMV7 here. For a full list of options, see the EF5 Readme included in the training materials)
- UNIT is mm/h (millimeter per hour; these are the units of the precipitation data)
- FREQ is 3h (every three hours; this is how frequently new precipitation files are available)
The PrecipForcing Block

- **LOC is precip** (this is where the precipitation files are located relative to the control.txt file)
- **NAME is 3B42RT.YYYYMMDDHH.7R2.bin.gz** (The naming scheme of the precipitation files must include date and time information, so that EF5 knows *when* in the simulation the precipitation occurs. **YYYY** translates to a four-digit year, **MM** to a two-digit month, **DD** to a two-digit day, and **HH** to a two-digit hour. So the final file names are 3B42RT.2002010103.bin.gz, 3B42RT.2002010106.bin.gz, etc., and sure enough, these match what we see in the screenshot below)
In the PETForcing block, we see

- The name of the block is FEWSNET
- TYPE is BIF (this is a binary version of an ESRI ASCII grid)
- UNIT is mm/h (millimeter per hour; these are the units of the PET data)
- FREQ is m (every month; this is how frequently new PET files are available)
- LOC is pet\bibimo\ (this is where the PET files are located relative to the control.txt file)
The PETForcing Block

• NAME is PET025.MM.bif (As with precipitation, the naming scheme of the PET files must include date and time information, so that EF5 knows when in the simulation the precipitation occurs. MM translates to a two-digit month, so the final file names are PET025.01.bif, PET025.02.bif, etc., and sure enough, these match what we see in the screenshot below)
The Gauge and Basin Blocks

In the Gauge block, we see

- The name of the block is PuentePortillo
- LON should be -74.6 (this is the longitude of the gauging station in degrees, where degrees west are negative; remember we used this longitude in QGIS in Module 2.2)
- LAT should be 4.45 (this is the latitude of the gauging station in degrees, where degrees south are negative; remember we used this latitude in QGIS in Module 2.3)
The Gauge and Basin Blocks

- **OBS** should be `obs\puente_portillo.csv` (this is the file path to the observations relative to `control.txt`; from there, you enter the `obs` folder and then see `puente_portillo.csv`)
- **BASINAREA** should be 6000.00 (this tells EF5 the approximate value to search for in the FAC grid when finding the gauge outlet, in km²)
- **OUTPUTTS** should be TRUE (you can run EF5 for multiple gauges simultaneously by adding additional Gauge blocks to the control file; this option tells EF5 which sets of results to actually output to file)
The Gauge and Basin Blocks

In the Basin block, we see

- The name of the block is Bogota
- GAUGE should be PuentePortillo (this is the name of the gauge block to be included in this Basin block)
The Gauge and Basin Blocks

Basin blocks are not physical basins; they are just a collection of gauges that you want EF5 to model together.

Multiple Basin blocks are possible; each gauge must be included in a Basin block.

EF5 then has a Task block (which we’ll get to in Module 2.4), and in that Task block, you can tell EF5 which Basin block to model.

One final comment on the Gauge and Basin blocks: you do not need to use the actual names of the gauges or basins over which you are modeling.
In **TYPE** 6 values are possible:

- **ASC**
 This is the ESRI ASCII grid format, with header as shown →
- **TIF**
 Float32 GeoTiff grid
- **TRMMRT**
 TRMM real-time binary format grid
- **TRMMV7**
 TRMM 3B42V7 HDF5 grid
- **MRMS**
 Multi-Radar Multi-Sensor binary grid (generally only used in the USA)

In **UNIT**, you can use **y** for year, **m** for month, **d** for day, **h** for hour, **u** for minute, and **s** for second, along with **m** for meters, **cm** for centimeters, and **mm** for millimeters.

Numbers are also allowed before the time, like **mm/3hr**
Additional PrecipForcing Options

In **FREQ**, you can use **y** for year, **m** for month, **d** for day, **h** for hour, **u** for minute, and **s** for second

Numbers are also allowed here, like 3h

In **NAME**, the available date and time codes are

- **YYYY** for year (like 2014, 2015, etc..)
- **MM** for month
- **DD** for day
- **HH** for hour
- **UU** for minute
- **SS** for second

Do not use **YYYY**, **MM**, **DD**, **HH**, **UU**, and **SS** in the filename outside of marking the appropriate date and time
In the PETForcing block, three **TYPE** values are available:

- **ASC**
 This is the ESRI ASCII grid format, with header as shown →

- **BIF**
 A binary version of the ESRI ASCII grid format

- **TIF**
 Float32 GeoTiff grid

UNIT, **FREQ**, and **NAME** operate identically to the PrecipForcing block
In the Gauge block, there are some other options available:

- **CELLX** and **CELLY**
 These are the x- and y-coordinates of the gauge in the topographical files instead of **LAT** and **LON**

- **BASINAREA**
 This is actually optional, but recommended, as EF5 will search the topographical files for a nearby FAC cell corresponding to the area you enter

- **OUTPUTTS**
 Tells EF5 to output the time series for this gauge

- **WANTDA**
 Tells EF5 to do data assimilation for the gauge

- **WANTCO**
 Tells EF5 to include the time series in a combined output file

For **OUTPUTTS**, **WANTDA**, and **WANTCO**, values of **YES**, **NO**, **TRUE**, and **FALSE** are allowed. **WANTCO** defaults to **NO** and the others default to **YES**
The Bottom Line

EF5 will tell you if the control file has a problem

If a file is missing, or a file path is incorrect, or a part of the task block doesn’t match the rest of the control file, etc., you will get an error that should identify where the problem is.

Then open up your control file and try to fix it!

Control file errors are there to help you, so always remember: don’t panic.
The next module is Automatic Calibration

You can find it in your \EF5_training\presentations directory

Module 2.3 References

http://www.fao.org/docrep/ x0490e/x0490e00.htm

EF5 Training Doc 4 – EF5 Control File, (March 2015).
