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Lessons Learned Regarding WCS Server Design and Implementation 

Status of this RFC 

This RFC Technical Note provides information on lessons learned from an Open Geospatial 
Consortium (OGC) Web Coverage Service (WCS) server design and implementation. This RFC 
does not specify an Earth Science Data Systems (ESDS) standard. Distribution of this memo is 
unlimited. 

Change Explanation 

This document is not a revision to an earlier version. 

Copyright Notice 

Copyright © 2009 United States Government as represented by the Administrator of the National 
Aeronautics and Space Administration.  No copyright is claimed in the United States under Title 
17, U.S. Code. All Other Rights Reserved. 

Abstract 

This document provides lessons learned regarding a WCS server implementation for the 
Coordinated Energy and Water Cycle Observations Project (CEOP) Satellite Data Server, a 
NASA ACCESS project that provides a gateway between the Open-source Project for a Network 
Data Access Protocol (OPeNDAP) and WCS protocols.  The gateway allows a user to use an 
OPeNDAP-enabled client to access satellite data held at a WCS server with services such as 
subsetting, reprojection, mosaicking and time series support.  This project was done as part of the 
Committee on Earth Observation Satellites (CEOS) Working Group and Systems and Services 
(WGISS) project activity, the WGISS Test Facility for CEOP.  This Technical Note presents 
several challenges encountered in the design and implementation of the WCS server, mostly 
arising from user access patterns, as well as the approaches taken to address those challenges. 
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1 Introduction 

This Technical Note describes lessons regarding a Web Coverage Service (WCS) server 
implementation from a NASA ACCESS project to provide a gateway between the Open-source 
Project for a Network Data Access Protocol (OPeNDAP) and WCS protocols. The project 
developed a data handler for the OPeNDAP server that enabled serving of data obtained from a 
WCS server. The aim was to allow access to the data by analysis clients that have OPeNDAP 
support but not WCS support. For its part, the WCS server enables the serving of high-resolution 
satellite swath data (suitably reprojected to the WCS supported Earth spatial reference system) in 
a gridded form intelligible to the OPeNDAP client.  A useful byproduct of the gateway 
architecture also allows third parties to provide OPeNDAP interfaces to data they do not actually 
hold but simply access remotely through WCS. 

The project was user-driven, by the Coordinated Enhanced Observing Period (CEOP) 
community, which afforded us the opportunity to see how the WCS server implementation 
served (or did not serve) the analysis clients employed by those users. This project was done as 
part of the Committee on Earth Observation Satellites (CEOS) Working Group on Information 
Systems and Services (WGISS) project activity, the WGISS Test Facility for CEOP.  

The user input for the project revealed several challenges not normally faced by WCS servers.  A 
key revelation was the expectation that many of the users in question were likely to want to 
analyze long time series of data for very small geographic areas. This contrasts with most WCS 
access patterns, which tend to concern short time periods (or even neglect time entirely.)  This in 
turn raised a number of challenges that rippled throughout many aspects of the project, including 
the WCS server design and implementation. In addition, the projected end-user clients, such as 
the Gridded Analysis and Display System (GrADS) provided additional constraints and 
challenges.  Finally, user questions about the content of what they were actually seeing pointed 
out the need to consider quality screening and provenance in the WCS server. 

The key lessons learned from attempting to serve this time-oriented community with WCS 
technologies are relevant to archives contemplating the use of WCS to serve data covering long 
time periods (i.e., years) to the science research community. Although some of these lessons may 
have implications as to how the OGC WCS protocol might be extended to better serve the 
temporal dimension, our primary goal is document our experiences for the benefit of WCS server 
implementers . 

2 Design of CEOP Satellite Data Server 

The CEOP Satellite Data Server was initially designed to include a gateway (middleware) 
between a WCS server for NASA satellite data and the OPeNDAP server.  However, the 
rearchitecture of the new version of the OPeNDAP server, Hyrax, allowed the key gateway 
functionality to be implemented instead as a “format handler” in the Hyrax’s Back-end Server 
(BES). Figure 1 shows the eventual high level design of the CEOP Satellite Data Server.  The 
handler can be configured during the installation of the Hyrax server.  In addition, significant 
customization of the WCS server implementation and configuration was necessary as well and 
forms the main basis for the lessons documented in this Technical Note. 

The basic process of fulfilling a request is: 
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1) The client submits an OPeNDAP request to the CEOP Satellite Data Server, which is 

handled by its front end, the OPeNDAP Light Front End Service (OLFS). 

2) the OLFS interacts with local catalog to identify the data source as WCS;  

3) the OLFS instructs its BES to set container type to WCS and passes identifying information 
about the data to be retrieved; 

4) BES formulates a WCS request to the WCS server; 

5) BES stores the WCS response to local cache;  

6) BES uses the NetCDF format handler to process cached file to satisfy the Data Access 
Protocol (DAP) request; and  

7) Subsequent DAP requests operate against local cache. 

 
Figure 1.  High-level Conceptual Design of the OPeNDAP / WCS Server. 
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This document focuses on the design and implementation of the WCS component interfaced to 
the CEOP Satellite Data Server. In fact, wo separate WCS servers were implemented, though 
sharing a substantial codebase.  A WCS server was implemented to serve daily global coverages 
of an Atmospheric Infrared Sounder (AIRS) Level 2 Standard Retrieval product (aka 
AIRX2RET) with actual CEOP requests focused on CEOP observation sites, essentially 250x250 
km squares around CEOP reference sites.  Although in theory, this server could respond to 
general, arbitrary user WCS requests, its primary purpose was to act as the back end to the CEOP 
Satellite Data Server, performing essential reprojection and mosaicking of AIRS Level 2 data, 
Thus, the 250x250 km CEOP reference site squares might be thought of as virtual products, 
generated on the fly. The global daily coverages presented to the client are actually the virtual 
products, as they are not archived in the Goddard Earth Sciences Data and Information Services 
Center (GES DISC).  The WCS server generates these coverages from individual 6-minute 
granule files physically stored in the GES DISC’s operational archive. The second WCS server 
was implemented within George Mason University’s GeoBrain environment to serve MODIS 
data.  In this implementation, individual granules were mapped to coverages. 

3 Client-driven Issues 

In this project, the end goal was to make the data transparently usable within analysis clients, 
such as GrADS.  As it happened, this imposed some basic constraints not faced by a WCS server 
designed to serve more generic WCS clients, such as commercial ones.  

3.1 Length of WCS Request URL  

Coverages provided by WCS servers that serve high data volumes are generally based on the 
physical data files in server databases or file systems.  That is, a server offers one coverage for 
one physical file.  Our MODIS server is implemented in this approach.  Because one MODIS file 
usually contains more than one scientific parameter, additional parameter identification is needed 
after a physical file name, which itself can be quite long due to inclusion of date and time.  This 
results in a coverage name dozens of characters long, e.g.: 
MOD05_L2.A2004209.0230.005.2007025064844.hdf:Grid:mod05:Water_Vapor_Near_Infrared 

The long coverage name, together with other parameters in the WCS GetCoverage request, can 
make the request URL too long to be handled by some analysis client software.  Note that this 
problem is not specific to the WCS protocol, but can become significant when WCS is used as a 
component of a distributed workflow.  

3.2 Encoding of Special Characters in URL  

In addition to the length of URL, special characters included in coverage identification may also 
cause problem in application software, for example, characters ‘&’, ‘:’, and ‘%’ in coverage 
identification may cause failure of the application software. Again, this becomes a potential 
factor when WCS URLs are embedded in distributed workflows for pass-through. 
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3.3 URL Transparency  

A popular feature in GrADS is the ability to script analysis on large assemblages of files using 
“templating”.  This requires access handles (filenames or URLs) that are both meaningful and 
predictable.   

There were actually two servers fielded for this project, which had very different properties with 
respect to the transparency of the URLs. The server for MODIS data presents each data file 
separately, without mosaicking, while the server for AIRS data uses mosaicking to present each 
variable as a global coverage. One issue in the per-file based MODIS server is that the physical 
file path and physical file name are exposed in the offered coverage name to the users. This name 
includes information which is confusing and opaque to users, such as the inclusion of both 
product observation and generation times in such file names as 
MOD05_L2.A2002274.0115.005.2006332104856.hdf.  Worse, the data observation time requires 
an orbit model to predict for a given location, and the data generation time is completely non-
deterministic, thwarting users attempting to script access to multiple coverages. Our users 
commented that they prefer service URLs with indicative information such as variable type and 
spatial and temporal extents.  For the AIRS server providing virtual coverage, the coverage is 
simply named using variable name, such as “TSurfAir” for surface air temperature.  The URLs 
viewed by the users are constructed in the Hyrax server with indicative information included, 
such as: 
http://test.opendap.org:8080/opendap/wcs/CEOP/BRA/ceopL2AIRSTimeOffsetLineage/TSurfAir/
2002-10-02.html 

in which the CEOP reference station name (BRA), variable, and time are clearly presented.  

3.3.1 Lesson learned 

It is relatively easy and straightforward for the Hyrax server to construct informative URLs for 
end users when the WCS server supports virtual coverages.  On the other hand, the per-file based 
WCS implementation with the physical file name exposed is less than ideal. The near term 
solution to this can be to use a logical versus physical file name lookup table to map physical file 
name to a more concise and informative logical name and the server can expose a physical file 
with its associated logical name.  For example, the MODIS file name mentioned in the previous 
paragraph can be replaced using a more informative and predictable name such as 
MODIS_WaterVapor_20021001. 

3.4 Choice of Profile 

Most important was the ability of the client to understand the contents of the results. This was the 
prime motive for using the NetCDF/CF1 profile in the WCS server:  the GrADS clients used by 
many CEOP users can open and read NetCDF/CF1 with a single call, as can other clients like 
Ferret and Panoply.  

http://test.opendap.org:8080/opendap/wcs/CEOP/BRA/ceopL2AIRSTimeOffsetLineage/TSurfAir/2002-10-02.html
http://test.opendap.org:8080/opendap/wcs/CEOP/BRA/ceopL2AIRSTimeOffsetLineage/TSurfAir/2002-10-02.html
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4 Coordinate Reference System (CRS) Transformation  

4.1 The Necessity of CRS Transformation  

Many of the data products served are swath data whose values are geometrically aligned with 
satellite swath coordinate system, while data users usually need data in earth coordinate, 
geographic or projected  reference system. CRS transformation (CRST) is therefore necessary in 
the gateway.  Allowing users to request CRST in a standard way is one of the key advantages 
that the OGC WCS protocol provides.  In the broad sense, CRST includes any change of the 
CRS associated with a dataset, including transformation from satellite swath CRS to 
geographic/projected CRS and various reprojections among projected CRSs.  Our user 
community (i.e., the CEOP scientists) is mostly interested in using the satellite data in 
geographic latitude/longitude coordinate reference system.  Thus, the CRST implemented in our 
server is mainly swath to geographic CRS transformation.   

4.2 The WCS Approach to Describing CRST  

The WCS specification provides a very simple standard parameter in defining how a CRST 
should be done, i.e., CRS.  A server lists all the CRSs it can offer in an XML element named 
SupportedCRS and a client specifies “CRS=crsValue”, where crsValue must be one of the values 
listed in the SupportedCRS element, to specify a desired CRS.  Although the CRST itself is 
theoretically a geometrical processing of data, it is actually influenced by the nature, or scientific 
meaning, of a data product being served, because it is essentially deriving new data values from 
input dataset values through interpolation and/or resampling.  WCS version 1.0.0 allows clients 
to use the InterpolationMethod parameter to specify a method to be used in deriving new values 
in desired CRS from input values in input CRS.  Three classical digital image processing 
interpolation methods, namely nearest neighbor, bilinear, and cubical convolution, are prescribed 
in WCS1.0.0.  A server may offer one or more of these methods and a client can select any one 
of the offered methods.   

4.3 Implementation Options   

While the WCS protocol defines CRST and related parameters, different servers may select 
different approaches to implement a CRST.  There are usually two ways to perform satellite 
swath to geographic CRST.  One is a forward method in which the data points in swath CRS are 
mapped to the output geographic CRS and interpolation is performed in the output coordinate 
system.  The other is a backward method in which the data point coordinate values in the output 
grid are mapped backwards to the input swath coordinate values and interpolation is performed 
in the swath CRS.  In our implementation, we used forward mapping and nearest neighbor 
interpolation during the forward mapping.  The reason to use forward mapping is that there is no 
straightforward way to find swath coordinate values from geographic coordinate values.  In our 
earlier implementation, we used a polynomial fitting function to derive swath coordinate values 
from geographic coordinate values.  The polynomial fitting function, usually with an order not 
exceeding three, performs faster than point-to-point forward mapping but lacks accuracy at the 
edge of a swath, unless multiple fitting functions are used, which will result in additional 
mosaicking processing at the boundaries of the valid regions of different functions.   
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In addition to the coordinate transformation and interpolation, the output grid point value may 
also involve further aggregation, as opposed to resampling, when the request grid cell size is 
larger than the input swath cell size.  The algorithm is product specific, depending both on the 
physical parameter measured and its representation (e.g., numerical vs. categorical).  The most 
common approach is to average the multiple input data points falling into one output grid cell, 
but there are also others such as picking the majority (mode), maximum, or minimum value.  
Currently all of our offered coverages are numerical data types and we used an averaging method 
to perform aggregation.  Further implementation will include the majority rule for nominal 
(categorical) data.  

4.3.1 Lessons learned  

CRST, or georectification/reproject, must be product specific and parameter-specific.  
Parameters in the WCS interface protocol are not sufficient to define the difference among 
products. 

5 Mosaicking of Multiple File Granules  

Most currently available WCS servers offer coverages based on physical files, i.e., each physical 
file is offered as one coverage.  While this is the most straightforward implementation and 
reflects a clear one-to-one relationship between a physical file and a coverage, it may not be 
desirable when a user’s area of interest exceeds the extent of one single physical file, in which 
case multiple requests must be used to get enough data for the interested area and the multiple 
returned coverages need to be mosaicked at the client side.  The alternative is for a server to offer 
a virtual coverage that is not tied with any one single physical file in the server’s file system.  
The server dynamically determines which physical files are associated with each client request 
and performs mosaicking, when necessary, of data from multiple files.  The advantage of this 
implementation is that the mosaicking is transparent to clients and the offered coverage can be 
described in a very general way.  The disadvantage is that it may take much longer for a server to 
respond due to the more complicated processing steps involved in the server side.  The client 
side mosaicking is usually much simpler because the coverages to be mosaicked are already in 
the desired geographic CRS.  In addition to more complicated processing steps, a server needs to 
estimate the memory and speed (i.e., space and time) of the server machine in determining how 
general a virtual coverage can be.  Limits on spatial and temporal extents may need to be 
imposed to make sure the generalization does not exceed server’s capability.  

As mentioned earlier, the AIRS WCS server offers virtual coverages where each variable is 
offered as a daily coverage whose spatial extents covers the entire globe.  Such virtual “global” 
coverage may involve many physical files (240 files per days in our AIRS Level 2 product case). 
This was refactored from the original implementation of separate, spatially constrained 
coverages for each CEOP reference site (there are about 30), which produced scalability 
problems in the gateway due to the combinatorially large number of resultant coverages (stations 
* parameters * days).   

When a client requests an output coverage with a large spatial and temporal extent, the server 
may not be able to fulfill the request.  To mitigate this, we put a constraint on the temporal extent 
of less than one day, from 0-hour to 24-hour.  Unfortunately the WCS specification does not 
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define how to describe such a constraint in a machine-understandable way.  Our server simply 
responds with an exception message when a request crosses the 24-hour boundary.  The 
message, in free text, is informative to a human user but not machine parsable.  In addition to 
that on the temporal extent, constraints on spatial extent can also be applied.  We used a temporal 
constraint because our user’s study areas, the CEOP sites, are globally distributed, allowing a 
global spatial extent enables users to request data for any CEOP site.  When the WCS server is 
integrated with the OPeNDAP Hyrax server, coverages from individual days are assembled into 
time series so that a user can request coverages for any CEOP site and at any time length within 
the two year (2002-10-01 to 2004-09-30) CEOP observation period.  

5.1 Lesson learned 

1) It is desirable for a WCS server to provide a virtual coverage service with server-side 
mosaicking of multiple physical files on demand.  A client need not know the relationship 
between the offered coverage and the actual physical files in the server.  Such a server capability, 
on the other hand, may be at the expense of either the server’s performance or its 
spatial/temporal extents, depending on factors such as file size, internal storage and transfer 
capability, and encoding. 

2) For servers performing on-the-fly-georectification, limits to spatial and temporal extents often 
need to be applied due to performance considerations. In our case, this was not so much a 
function of exactly which CRSTs were supported.  Rather it was a function of the two-year time 
period supported, raising the spectre of a global request potentially using as many as 175,000 
input swath granules.  One issue with applying temporal limitations is that WCS does not have a 
machine-parsable way to describe such a limitation to the client. 

6 Time Stamps  

The WCS specification provides a Time keyword with which a user can define desired temporal 
extent for a data product.  The keyword is flexible enough to allow specifying either time points 
or time periods. It is expected that the output coverage from a server should exactly reflect the 
time requirement requested by a user.  For example, when a requested time is accurate to a 
minute, the values in the output coverage should reflect the measurement of that specific minute, 
and when the time is accurate to a day, the value should be a daily measurement.  In actual use 
scenarios, however, things may become more complicated, depending on the data product being 
served.  For pre-gridded products such as hourly, daily, and monthly accumulated precipitation, 
the server can offer unambiguous time information and a user can obtain coverage with temporal 
extent matching exactly with what is requested, such as to specific hour(s) and day(s).  However, 
for ungeorectified swath data, approximation and customization in terms of time may be 
necessary.   

With our Level 2 AIRS products, our server offers “daily” coverages allowing a user to request 
data for a specific day.  However, the observation times for different points in the coverage are 
not the same and thus coverage values do not actually represent a daily measurement.  That is, 
the actual observation times of the swaths that contribute to a 250x250km square vary from day 
to day and may even span more than one orbit. In addition, there are both day and night crossings 
in many cases.  Therefore it is necessary to discuss with the intended users on how the time 
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information can be best represented and used.  Our discussions with users led us to group the 
observation into two groups, one representing day time and the other night time.  Thus, the 
output coverage would have a day time component and a night time component, i.e., the 
coverage data array has a “time” dimension whose size is 2. Initially, we used the average of day 
time observations and average of night time observations to represent the day and night 
components of the coverage, respectively.  Such average times are not fixed at specific times 
during a 24-hour period, but rather change with different spatial locations and days.  This 
variation is difficult to handle in the GrADS software when constructing time series data for 
temporal analyses.  After further tests, our users suggested that we use two fixed times, one 
09:30 and the other 19:30, to represent day and night components of the output coverage. Since 
these are not the actual observation times, an additional data array is needed to record the exact 
observation time for each grid point in the returned coverage file.  This additional data array may 
not be easily used by users. 

6.1 Lessons learned 

1) There are cases where the WCS coverage specification must be understood differently due to 
special data product characteristics.  The temporal and spatial dimensions in WCS are assumed 
to be perpendicular (or independent).  In our swath data product, this assumption is not true.  The 
spatial location of a coverage grid point changes as time changes.  This leaves the WCS 
implementor on the horns of a dilemma:  in mosaicking, the observation times can be fixed at a 
certain granularity (daily in  our case), in which case the accuracy of the observation time is 
sacrificed.  Alternatively, the implementor can fall back to “granule-based” coverages, which 
preserve most of the temporal accuracy, but with some loss of usability as noted in section 5.  

2) The server provider should consult with intended users to decide how best to represent the 
time values in such output coverages.  It is possible that different users may have different 
requirements and thus different versions of server implementations may be needed.  This is 
somewhat at odds with the goal of the WCS interoperability, i.e., WCS servers and clients should 
be interoperable at machine to machine level without having to make special arrangements 
between specific servers and clients.  Solving this conundrum would require a more nuanced 
representation of time in the WCS specification that can account for the cases where spatial 
coverage is covariant with time.  At this point, our exercises indicate that a mutual understanding 
between service providers and service recipients on product specifics is required for a useful and 
usable exchange for  applications (such as much scientific research) that are sensitive to temporal 
accuracy.  

3) Another note about the time dimension in our server is that our current implementation of 
dividing day and night components is actually not consistent, in strict understanding of WCS 
protocol, with the offered (and also requested) time description.  When a client requests one 
single time, i.e., a day, our server responds with a coverage having a time dimension of size of 2, 
each for day time and night time, respectively.  This may cause problems for more general 
clients that do not have prior knowledge of the returned coverage.  An alternative is to offer two 
coverages for each day, a day time coverage and a night time coverage.  A client would need to 
send two requests and receive two separate coverage files for a specific day.  However, this 
would degrade the performance at both server and client sides.  
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7 Handling Ancillary Information 

7.1 Quality Screening  

Quality screening is generally product-specific. Though some products have simply good and 
bad data, others range up to complicated bitmasks defining different quality attributes. Thus, it is 
difficult to define general parameters within the WCS protocol to drive such screening. An 
alternative is for the service provider to implement specific screening approaches for the 
products being offered.  Again, this may sometimes involve intended users because a specific 
user (or user community) may have special requirements with respect to data quality.  For 
example, many of our AIRS variables have different quality levels (e.g., good and best) and 
different users may have different criteria.  At the implementation level, a service provider may 
also have alternatives.  For example, a server may pack the quality control values into a coverage 
file for users who want to check the qualities themselves.  In our implementation, however, we 
perform the quality screen at the sever side in the interest of usability and do not provide 
additional quality fields to the client.  We included in our output coverage all data points that are 
not labeled as "do not use" .  The criterion can be changed, based on user feedback, in the server 
configuration file.  

7.1.1 Lesson learned 

For scientific research, it is critical that the data be properly screened for quality.  The WCS 
specification does not account for quality screening, so our approach instead was to implement 
server-side screening to eliminate bad quality data. We did not get many comments from our 
users on how quality screening should be performed and how QC data should be packed into the 
output coverage, partly because our server-side implementation of screening made the process 
transparent to them. However, in the long term, the adequacy of this solution needs extensive 
usage in real applications, which unfortunately exceeds the project cycle.  (With extended 
maintenance of the server at the Goddard Earth Sciences Data and Information Services Center, 
this user feedback might be obtainable, allowing us to revise our quality approach as necessary.) 
Should users require more flexible ways of screening or assessing the quality of data served 
through a WCS server, some additions to the protocol might become necessary.  

7.2 Including Ancillary Information in Output Coverages 

Aside from the per-gridpoint time and quality assurance in the previous discussion, there are 
potentially more ancillary fields including viewing and illumination geometry arrays, cloud 
percentage, standard deviation, and measurement/retrieval error value.  Whether such 
information should be included in the output coverage depends on users’ specific needs.  A 
server has different options to expose such information to users, such as in the coverage 
description and metadata.  The simplest, most straightforward way for the server is to offer these 
ancillary data arrays as coverages in their own right, just as the main variable coverage.  For 
example, a server may offer land surface temperature and its associated cloud fraction as two 
separate coverages.  A user needing cloud fraction to evaluate the land surface temperature may 
want to acquire both coverages.  This implementation can avoid potential difficulties in data 
encoding because some data encoding formats do not allow multiple data arrays to be packed 
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into one single file. The drawback to this is that ancillary variables that should be bound to the 
main coverage are instead separated from it, complicating data management on the user's side. 

7.2.1 Lessons learned 

We currently do not include ancillary data arrays in output coverage.  However, the output 
coverages in our service are already screened using ancillary data information, particularly the 
quality control arrays.  When required, the WCS server can be revised to also offer ancillary data 
coverages so that a user will be able to request such coverages.  A potential issue for such an 
implementation is that it will require user to link an ancillary coverage with the actual variable 
coverage, which may be difficult with many variables and ancillary coverages, especially when 
the ancillary coverages are not simultaneously requested with the variable coverage.  This places 
a burden on the end user, if human, or even the WCS client developer in matching up the proper 
ancillary coverage with the variable coverages.  In contrast, it is easier for the end user if all 
related ancillary data are packed with the variable data in one output physical coverage file. Even 
in this case, a number of additional issues arise, such as where in the payload to include the 
information where it can be discovered and accessed, as well as how to translate into standard or 
conventional units. 

7.3 Provenance Information  

Early on, it became apparent that service chaining risked the obscuration of the source data and 
the processing applied to that data by the services. In our case, for instance, Level 2 swath data 
were first quality screened and then reprojected to a geographic grid. These are significant 
operations:  should anything look "funny" in the data, a user is likely to want to go back to the 
original source data for comparison.  Indeed, the user is generally not even aware that these 
operations have been done.  The WCS protocol provides no explicit location for putting this 
information. In our demonstration of provenance chaining, we chose to embed the provenance 
information in a NetCDF/CF1 attribute (following an ISO 19115 type of structure).  While not 
the most general solution, it has the virtue that the provenance stays with the data. This approach 
is described in more detail in RFC-15. 

8 Scaling and Performance  

As previously mentioned, we have two versions of WCS, one providing per-file based service 
without the on-demand mosaic capability and the other offering virtual coverages that are not 
tied to specific physical data files.  For the per-file based service, the performance is not an issue 
regarding single coverage requests, except for rare cases when a client requests very high 
resolution output.  (We have internally set certain requirements to prevent such a situation from 
happening.)  On the other hand, time series studies can translate into a large number of requests 
during a short period of time (e.g., hundreds or thousands of simultaneous requests), in which 
case some requests may time out as the machine hosting the server slows down or runs out of 
memory or temporary disk space.  (We have not yet conducted such scaling tests.)  For the 
version that offers virtual coverage, the server is also at risk of performance problems because it 
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essentially offers unlimited spatial and temporal1 extents.  Due to the virtual coverage offering, 
scalability is strongly driven by client requests. Theoretically, the server should be able to 
provide a coverage that covers the entire spatial and temporal extents, e.g., a single global 
coverage from all the available years (two years in our CEOP use case) at nominal spatial and 
temporal resolutions (0.25 degree and one-day in CEOP use case).  In actuality, our server does 
not support such requests. We allow only daily requests, primarily due to the number of files 
needed to access at the server side (240 files per day).  Currently the temporal scale-up is 
provided through the Hyrax server where daily coverages for specific CEOP sites are staged.  It 
is also possible to configure the WCS server to individual CEOP sites and eliminate the need to 
access all physical files.  Our current design is to make the WCS general enough but make use of 
the scalability of the Hyrax server to meet user’s long time series requirement.  

Lesson Learned: The staging of daily coverages from the WCS server in the Hyrax server seems 
to be effective:  it can provide users with long term time series for different CEOP sites, while 
insulating the WCS server from large requests that would seriously impair the WCS machine’s 
performance. 

9 Conclusions 

It would be nice to think that a WCS server can be designed and implemented in a generic sense, 
without any consideration of the characteristics of the expected clients and users on the other side. 
Indeed, one of the key goals of standardizing protocols such as this is to abstract the user access from the 
server implementation.  However, our experience seems to indicate that consideration must be given to 
those client and user factors in order for the WCS access to be useful to the target community. In 
addition to client/user factors, specific characteristics of the datasets to be supported can also exert a 
strong influence on the implementation requirements of the server.  These characteristics are particularly 
exposed when offering long time periods of data to users that have a particular interest in the time 
dimension, as is the case with the CEOP users community. While this does not negate the usefulness of 
the WCS protocol in such cases, it does point to challenges in the server implementation. Though these 
challenges are solvable, they may nonetheless temper expectations for quick adoption of WCS within 
the Earth science research community unless user and client influences inform WCS server 
implementations. 
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Appendix A - Glossary 

ACCESS - Advancing Collaborative Connections for Earth System Science 

AIRS – Atmospheric Infrared Sounder 

BES – Back-end Server 

CEOP – Coordinated Energy and Water Cycle Observations Project 

CEOS – Committee on Earth Observation Satellites 

CF1 – Climate and Forecast convention, version 1 

CRS – Coordinate Reference System 

CRST – Coordinate Reference System Transformation 

DAP – Data Access Protocol 

ESDS – Earth Science Data Systems 

GES DISC – Goddard Earth Sciences Data and Information Services Center 

GrADS – Gridded Analysis and Display Tool 

MODIS – Moderate Resolution Imaging Spectroradiometer 

NetCDF – Network Common Data Form 

OGC – Open Geospatial Consortium 

OLFS – OPeNDAP Lightweight Frontend Server 

OPeNDAP – Open-source Project for a Network Data Access Protocol 

QC – Quality Control 

URL – Universal Reference Locator 

WCS – Web Coverage Service 

WGISS – Working Group on Information Systems and Services  

XML – eXtensible Markup Language 
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