

Australian Government

Geoscience Australia

Australian Geoscience Data Cube

CEOS WGISS-39

Simon Oliver Jonathon Ross

Australian Government

Geoscience Australia

© . Commonwealth of Australia (Geoscience Australia) 2014

Overview

- Geoscience Australia background and EO history
- Introduction to the AGDC: common analytical platform for EO data
- Example Applications
- EO Data Collection Management
- AGDC API overview and usage

Geoscience Australia – background and EO history

Geoscience Australia applies geoscience to Australia's most important challenges by providing geoscience information, services and capability to the Australian Government, industry and stakeholders.

Geoscience Australia - background and EO history

Strategic priorities:

- 1. Building Australia's Resource Wealth
- 2. Ensuring Australia's Community Safety
- 3. Managing Australia's Marine Jurisdictions
- 4. Securing Australia's Water Resources
- 5. Providing Fundamental Geographic Information
- 6. Maintaining Geoscience Knowledge and Capability

Geoscience Australia – background and EO history

Energy Division	Community Safety and Earth Monitoring Division	Environmental Geoscience Division	Corporate Services
Energy Systems	Community Safety	Groundwater	ICT Innovation and Services
Mineral Systems	Geodesy and Seismic Monitoring	National Earth and Marine Observations	
Resources Advice and Promotion	Observatories and Science Support	National Location Information	

Geoscience Australia is a publicly funded Agency within the Australian Government Industry and Science portfolio

~AUD \$130M budget for financial year 2013/14

Relationships

- Historically strong relationship with US Government on Landsat mission support
- Support for ALOS, JERS
- Membership and active participant in Landsat Science Team
- NASA Systems Engineering Office for KenyaCube in support of GFOI/GEOGLAM
- Developing a Memorandum of Understanding with the European Commission / ESA
- Seeking to engage more closely with ESA regarding Copernicus

A typical day of data acquisition

Landsat7 Landsat8 Terra MODIS Aqua MODIS Suomi NPP NOAA AVHRR

7

From direct reception to internet bulk transfer

Downlink at Alice Springs reception facility

High volume data transfers via the internet

Growing requirement for data beyond our acquisition circle

Geostationary satellites

Himawari-8: Specification of Observation

Bands of Himawari-8/9

	Band	Wavelength [µm]	Spatial Resolution			
	1	0.47	1 km	RGB		
	2	0.51	1 km 🗡	Composited		
	3	0.64	0.5 km	True Color Image		
	4	0.86	1 km			
	5	1.6	2 km			
	6	2.3	2 km			
	7	3.9	2 km			
	8	6.2	2 km			
	9	6.9	2 km	Water		
	10	7.3	2 km	vapor	Full C	
	11	8.6	2 km	SO2	Inter	
	12	9.6	2 km	O 3	Japan	
	13	10.4	2 km		Dimens	
	14	11.2	2 km	Atmospheric Windows	-	
	15	12.4	2 km		Interval	
	16	13.3	2 km	CO2	Dimens	
ſ	Number of Bands: 5 16 Interva					

lisk

val: **10 minutes** (6 times per hour)

Area

I: 2.5 minutes (4 times in 10 minutes) ion: EW x NS: 2000 x 1000 km x 2

Area

I: 2.5 minutes (4 times in 10 minutes) ion: EW x NS: 1000 x 1000 km

al: 30/60 min.<mark>l</mark>

http://severe.worldweather.wmo.int/TCFW/JMAworkshop/4-3.Himawari8-9_Ylzumikawa.pdf

10 min.

From Detection to Situational Awareness

CSIRO

Satellite Earth Observation Data Holdings at Geoscience Australia 1979 – 2014 (L0)

In the next decade

CSIRO

The growing expectations of users

csiro

science Australia

The challenge

Data collection is dynamic: growing in time, and also subject to modification (existing data) and insertion (new data). The challenge is to enable:

- Attribution of exact observation time for key applications e.g. tides for shallow-water bathymetry, bare earth
- Analysis of each observation in the time-series
- Reliable comparison of observations over long periods of time, e.g. change detection, pattern analysis
- Iteration and refinement of processes at continental scale
- Rapid generation of results

Unlocking the Landsat Archive

A Space Science and Innovation project that received **AUD \$3,472,965 (3 years)** funding through the Australian Space Research Program.

- Lockheed Martin Australia Pty Ltd (LMA)
- Australian National University National Computational Infrastructure (NCI)
- Geoscience Australia (GA)
- Victorian Partnership for Advanced Computing Ltd (VPAC)
- Cooperative Research Centre for Spatial Information (CRCSI)

Outcomes

- Migrated Australia's Landsat archive from tape to spinning disk
- Developed processing routines for automated calibration of data
- Prototype development of the Australian Geoscience Data Cube

Australia Geoscience Data Cube

Australian Government

Geoscience Australia

High Performance Computing

- Raijin @ National Computational Infrastructure
- AUD \$50M to buy AUD \$12M/year to operate
- **57,472 cores** (Intel Xeon Sandy Bridge technology, 2.6 GHz) in 3592 compute nodes;
- 160 TBytes (approx.) of main memory;
- 10 PBytes (approx.) of usable fast filesystem (for short-term scratch space).

37	Research Institute for Information Technology, Kyushu University Japan	QUARTETTO - HA8000-tc HT210/PRIMERGY CX400 Cluster, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, NVIDIA K20/K20x, Xeon Phi 5110P Hitachi/Fujitsu	
38	National Computational Infrastructure, Australian National University Australia	Fujitsu PRIMERGY CX250 S1, Xeon E5-2670 8C 2.600GHz, Infiniband FDR Fujitsu	
39	Purdue University United States	Conte - Cluster Platform SL250s Gen8, Xeon E5-2670 8C 2.600GHz, Infiniband FDR, Intel Xeon Phi 5110P Hewlett-Packard	

*http://top500.org/

National Computational Infrastructure

NCI operates as a formal collaboration of a number of research institutions. The major partners are:

- Australian National University (ANU)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australian Bureau of Meteorology (BoM)
- Geoscience Australia (GA) 4% share AUD \$0.5M / 3 years

PROVIDING AUSTRALIAN RESEARCHERS WITH WORLD-CLASS HIGH-END COMPUTING SERVICES

Funding supporting data infrastructure

Australian Government Initiatives helping build the foundations for EO data exploitation

RDSI **AUD \$50M** to enhance data centre development and support retention and integration of nationally significant data assets into the national collaboration and data fabric.

NCRIS National Collaborative Research Infrastructure Scheme

PROVIDING AUSTRALIAN RESEARCHERS WITH WORLD-CLASS HIGH-END COMPUTING SERVICES

RDSI

Research Data Storage Infrastructure

- C2 Physical Sciences 2.92%
- 🔮 04 Earth Sciences 85.1%
- 🔮 06 Biological Sciences 1.34%
- 🔮 09 Engineering 0.05%
- 13 Education 0.01%
- 15 Commerce, Management, Tourism and Services -0.01%

- 🔮 03 Chemical Sciences 6.44%
- 🔮 05 Environmental Sciences 2.92%
- O7 Agricultural and Veterinary Sciences 0.54%
- 🔮 11 Medical and Health Sciences 0.65%
- 6 14 Economics 0.01%
- 🕒 16 Studies in Human Society 0.01%

Simplified data structures

- The AGDC arranges 2D (spatial) data temporally and spatially to allow flexible but reasonably efficient large-scale analysis.
- "Dice'n'Stack" method used to subdivide the data into spatially-regular, time-stamped, band-aggregated tiles which can be managed as dense temporal stacks.

Robust and highly iterable processes

Current AGDC contents - Landsat

27 years of Landsat data (1987-2014) processed so far*:

- 20,500 passes in 301,400 acquisitions
- 857,000 available datasets (all processing levels)
- 93 x 10¹² pixels in all available datasets
- ~1200 observations for some areas

* Figures as at 30/9/14 rounded to nearest hundred

Support for other observation platforms

Level 1 Topographic	ARG-25 (NBAR)	Pixel Quality (PQA)*
 (ORTHO) 1. LS5-B60 – Thermal Infrared 2. LS7-B61 – Thermal Infrared Low Gain 3. LS7-B62 – Thermal Infrared High Gain 	 LS5/7-B10 – Visible Blue LS5/7-B20 – Visible Green LS5/7-B30 – Visible Red LS5/7-B40 – Near Infrared LS5/7-B50 – Middle Infrared 1 LS5/7-B70 – Middle Infrared 2 	1. PQ – Bit-array of PQ tests
 Fractional Cover (FC)** 1. Photosynthetic Veg. (PV) 2. Non-Photosynthetic Veg. (NPV) 3. Bare Soil (BS) 4. Un-mixing Error (UE) 	 Digital Elevation Model (CC-by 1" DEM) 1. DEM - Bare-earth DEM 2. DEM-S - bare-earth DEM, adaptively smoothed 3. DEM-H - hydrologically enforced 	 MOD09 – surface reflectance MOD43 – NBAR corrected
ASTER 1. Mineral products	AGRI	AVHRR
MERIS		* PQA Geoscience Australia** JRSRP

Example Applications – Water Observations from Space

Example Applications – Water Observations from Space

Base Layer Google No Ba Overlays Clear C Water Water Confid Confid Filtere

At long: 148.05047, lat: -28.67132

- Times this location was observed clearly: 400
- Times that water was indicated at this location: 310
- Percent of time that water was observed at this location: 77.5%
- Confidence that the water observation at this location is correct: 99%

The detailed water observation values can be seen:

- As CSV values
- As a graph

Map data @2015 Google Imagery @2015 TerraMetrics | Terms of

Example Applications - Using tidal models to map tidal extents

Tidal Range of >10m

Tidal Zone Extent

Can be attributed with offsets of LAT to lowest observed tide and HAT to highest observed

Tidal Zone Morphology

Fraction of water observations over the time series. Can we attribute this with depths?

Example Applications - National Fractional Cover Time Series Joint Remote Sensing Research Program

Fractional cover uses a constrained un-mixing model with end-members derived from field sampling.

Creates an image with the percentage of bare, green and non-green fractions

Over 1100 field sites collected using consistent, nationally agreed protocol

Captures cover dynamics at 25m* resolution

Applied by Geoscience Australia nationally using Australian Space Research Program funds

Conversion from grain cropping to deciduous tree cropping

AGDC application themes to be supported

- 1. Water
 - a) National Flood Risk Information
 - b) Inland Water Detection
 - c) Shallow water bathymetry/intertidal
- 2. Vegetation
 - a) Condition Assessment
 - b) Carbon Accounting
 - c) Crop mapping & primary productivity
- 3. Data Fusion
 - a) Landsat and MODIS Blending
- 4. Cal/Val site identification (detecting stable spectral response)
- 5. Geology
 - a) Detecting bare earth to enhance mineral mapping

AGDC Contents

- AGDC database provides indexing and filtering capability to enable attribute-based tile selection
- **AGDC API** facilitates algorithm construction
- Written in **Python** and based on the open source Geospatial Data Abstraction Library / GDAL esp. Virtual Raster Transforms
- Data grid specification based on the ANZLIC National Nested Grid Specification Guide – OGC DGGS SWG

Australian Government Geoscience Australia

Discrete Global Grid System

Simplifying AGDC production tasks

- Luigi enables construction of **complex pipelines of long-running batch jobs** by handling dependency resolution, workflow management, visualization etc.
- Conceptually, Luigi is similar to <u>GNU Make</u> where certain tasks exist which may have dependencies on other tasks
- Luigi takes care of a lot of the **workflow management**
- We have adapted Luigi to use the Message Passing Interface (MPI) for parallel processes execution on the HPC.
- Use of Luigi enables execution of **embarrassingly parallel tasks** associated with processing continent-wide processes across the 800+ AGDC tiles.

Contributors to change in an output dataset

Potential Data Change Variables

- Ancillary data version update
 - Change in geometric base (i.e. image chips used in rectification)
 - Correction parameter update
 - Improved Terrain Model
- Database schema update
- Database content update
- Software update
- Software library update
- Configuration change (command line configuration)
- Runtime environment
 - Operating System
 - Processor architecture
 - Network distribution, if using parallelization
- Build configuration
 - Compilation options
- Change in data model or output format

Managing the data collection

Towards repeatable and transparent processes:

- System Snapshot as part of Production Rollout
- Version Control software and data
- Automated retrieval of ancillaries and update
- **Provenance reporting** based on version-controlled inputs and outputs
- Provenance analysis (relating entities)
- Workflows for automation
- Patch and reprocess task dependencies in workflow used to repair collections

Tasks Underway (or Completed) with Current AGDC

- Code now open-sourced on GitHub (<u>https://github.com/GeoscienceAustralia/agdc</u>)
- New release in May(<u>https://github.com/GeoscienceAustralia/agdc/releases</u>)
- Ingesting new data collections using generic ingestion framework (e.g. MODIS).
- Hardening remaining prototype code and optimising prototype DB schema.
- **Developing new APIs** to support specific use case patterns.
- Developing **generic workflow tools** to manage parallel processing (Luigi)
- Delivering basic WMS, WCS, WPS & WCPS web services
- Providing simple tools for cross-sensor interoperability (e.g. spectral matching/adjustment)

http://geoscienceaustralia.github.io/agdc/a pi/0.1.0/html/index.html

Applications

Standard Workflow Patterns

- 1. Use cases analysed
- 2. APIs designed
- 3. Generic, HPC-friendly workflow engines implemented

API command line tools

There are a set of packaged executables for Non-Python "People":

- Retrieve pixel time series
- Retrieve dataset
- Retrieve dataset time series
- Retrieve dataset stack
- Retrieve time series within an AOI
- Summarise dataset time series

Example API execution – pixel drill

```
$ retrieve_pixel_time_series.py -h
                [-h]
usage:
                [--quiet | --verbose]
                --lat LATITUDE --lon LONGITUDE
                [--acq-min ACQ_MIN] [--acq-max ACQ_MAX]
                [--process-min PROCESS MIN] [--process-max PROCESS MAX]
                [--ingest-min INGEST MIN] [--ingest-max INGEST MAX]
                [--satellite {LS5,LS7,LS8} [{LS5,LS7,LS8} ...]]
                [--apply-pqa]
                [--pga-mask
{PQ MASK CLEAR, PQ MASK SATURATION, PQ MASK CONTIGUITY, PQ MASK LAND, PQ MASK CL
OUD,...} [...]]
                [--hide-no-data]
                --dataset-type {ARG25, PQ25, FC25, WATER, ... }
                [--delimiter DELIMITER]
                [--output-directory OUTPUT DIRECTORY]
                [--overwrite]
```


Example API execution – pixel drill ARG25

\$ retrieve_pixel_time_series.py --lon 120.25 --lat -20.25 --acq-min /
2013-12 --acq-max 2013-12 --satellite LS7 --dataset-type ARG25 --quiet

SATELLITE,ACQUISITION DATE,BLUE,GREEN,RED,NEAR_INFRARED, /
SHORT_WAVE_INFRARED_1,SHORT_WAVE_INFRARED_2
LS7,2013-12-01 01:58:47.045319,-999,-999,-999,-999,-999,-999,-999
LS7,2013-12-10 01:53:02.625103,-999,-999,-999,-999,-999,-999
LS7,2013-12-17 01:58:47.468905,388,824,1605,2632,3326,2626
LS7,2013-12-26 01:53:05.686238,-999,-999,-999,-999,-999,-999

Example API execution – pixel drill WOfS

\$ retrieve_pixel_time_series.py --lon 120.25 --lat -20.25 --acq-min / 2013-12 --acq-max 2013-12 --satellite LS7 --dataset-type WATER --quiet

SATELLITE, ACQUISITION DATE, WATER LS7, 2013-12-01 01:58:23, Saturation/Contiguity, 2 LS7, 2013-12-10 01:52:38, Saturation/Contiguity, 2 LS7, 2013-12-17 01:58:23, Dry, 0 LS7, 2013-12-26 01:52:41, Saturation/Contiguity, 2

Demonstration available

47GB VM – osgeo-live8.0 Ubuntu LinuxLatest AGDC release2 months of TM and ETM+ data for a 2x2 tile subset

AGDC open source project

https://github.com/GeoscienceAustralia/agdc

Examples

- 1. Create a tile listing based on input tile and criteria
- 2. Filter pixels based on quality
- 3. Create an RGB image from tile contents for a date range
- 4. Iteratively create multiple indices for a Data Cube tile
- 5. Submit bulk processing over a selected area

NCI 🖉

What does it cost to make a Data Cube?

http://currencyguide.eu/

Unlocking the Landsat Archive project: Second year of Data Cube : Current year of Data Cube :

WOfS first year (prototype application):

NCI membership

~AUD **\$3.5M** over 3 years ~AUD **\$1.5M** ~AUD **\$2M**

~AUD **\$1M**

~AUD **\$0.5M** for 3 years?

Online storage rate of \$500/TB/YR currently covered by RDSI funding

Questions!

Simon.Oliver@ga.gov.au

52