

JAXA Approach on Virtualization and Cloud

Computing

Satoko Horiyama MIURA Satellite Applications and Operations Center JAXA

JAXA Ground Systems for EO Satellites

- Mission Operation System (MOS)
- Infrastructure System (G-Portal, Network, Storage, etc)
- Satellite Control System
- Research System
- Flight Dynamic System (FDS)
- Data Receiving Stations, etc

Current Systems(As of April, 2016)

How it started in JAXA? (1/2)

- Phase1: 2010~2014
 - Target : Cost for System Replacement
 - Study1]Which system can work <u>on cloud</u>?
 - Study2]Virtualization can reduce the replacement cost?

How it started in JAXA? (2/2)

- Phase2 : 2014~
 - Target : Cost for Operation and Maintenance
 - Study 3]Which system can be <u>migrated</u> into the new "common" system?
 - Study 4] Which type of servers; <u>cloud, on-</u> <u>premises or/and supercomputers</u> are appropriate for the "common" system?

[Study1] Which system can work for the other system can work for t

- Some servers might be placed on cloud, but there were so many issues.
 - COTS license
 - COTS performance
 - I/O speed (within cloud)
 - Network between Cloud systems and JAXA systems

"<u>NO GO</u>" at that moment

[Study2]Virtualization (1/2) :2013~2014

- A hypervisor S/W Study results
 - Purpose : to decrease migration/replacement frequency
 - Target: VMware, KVM, Xen

		VMware	KVM	Xen
Vendor	Development	VMware Inc.	linux-kvm.org	Xen Project
	Sales	VMware Inc.	Redhat Inc.	Citrix Inc.
Release Frequency		1 year	3 years	1 year
H/W Compatibility		Based on "Hardware Compatibility List"		
Guest OS Compatibility		Based on "Compatibility List"		
Technical Support		5 years	5 or 10 years	5 years

[Study2]Virtualization (2/2)

* In general, support (maintenance updates and upgrades, bug and security fixes) duration is about 5 years.

[Study3] System Migration

- Goal : More cost-efficient system
 - Operation and Maintenance cost
- Same or similar functions will be migrated.
- Case1 : MOS (Mission Operation System) & Data Distribution system
- Case2 : Infrastructure system (Storage, NW)

Common System: Pros and Cons

Pros

- Servers are handled as "resource". If there is enough room, resource can be provided by a few clicks.
- Server procurement and application/system procurement can be divided.
- Service continuity during some server replacement and maintenance
- Cons
 - Failure on one server has impact on multiple functions.
 - But recovery using another server will be very soon.
 - In "micro" view, performance may decrease.
 - But in "macro" view, overall performance will be increased.

JMA : Japan Meteorological Agency KSAT : Kongsberg Satellite Services BASS : Data Storage System GPortal-R: EO Satellite Data Portal E-XING :EO mission External Interface Gateway

JMA : Japan Meteorological Agency KSAT : Kongsberg Satellite Services BASS : Data Storage System GPortal-R: EO Satellite Data Portal E-XING :EO mission External Interface Gateway

Case 2: Current situation

- 17 servers are running
 - 4 servers will be removed (their functions will not be necessary).
 - 10 servers can be migrated into 5 servers -> Cost effective system!
 - Remaining 3 servers will be as they are (no big pros on migration).

Case2 : New Configuration Example (physical)

10G Ethernet

Case 2: New Configuration Example (logical)

[Study4] Cloud, On-premises or Super Computers?

- Only MOS and Infra./ Data Storage(BASS) is the target for this study.
 - The next phase "G-Portal" developer (contractor) did choose "on-premises", not " cloud" environment.
- MOS Common system : "on-premises" or "cloud"?
- MOS Re-processing system : Super Computers
- BASS : "on-premises" or "cloud"?

Discussions are still on-going

Some Issues for Using Cloud

- Cost for data download
 - Egress charge...
- Network between Cloud and JAXA system
 - How to move BIG DATA to cloud?
 - "AWS snowball" may be one of the solutions.

COTS

- License conditions are varied.
- Vendor Lock-in
 - Switching from "Cloud vendor A" to "Cloud vendor B" will be "easily" possible?

Security

- Domestic located servers are preferable.
- (Not specific to cloud usage) spaghetti code

Future Idea (still under consideration)

- User service on Cloud
 - Collaboration with Cloud vendor, such as AWS and Google(Earth Engine)
- User "category" expansion is required.
 - Researchers -> Researchers + Business/Application users
 - Business/Application users may like services on cloud and start using our data more proactively. But at this moment, still unknown.
 - "Who wants this service? This service will be really used?": Difficult to answer before starting the service.

- 1. How are you using cloud computing in your organization/project?
 - We do not use cloud computing yet.
- 2. How mature is your organization in the use of cloud computing?
 - Not yet mature!
- 3. Are you using public clouds, private clouds, hybrid clouds? Are you using multiple cloud providers? Which ones? (Vendors)
 - N/A

- 4. What benefits have you seen from using cloud computing?
 - If used for data re-processing, the data will be ready within much shorter period. And no need to maintain servers for occasional re-processing.
- What are the challenges you have faced? (security, costs, expertize, etc.)
 - Costs for data download
 - Network
 - COTS license issue
 - Vendor lock-in
 - Spaghetti code
 - Expertize (can be acquired via WGISS!)

- 6. What are your opinions about using cloud computing for your organization/project? Where do you think it is appropriate and where it is not?
 - If data download cost issue and network issue is resolved, common data processing function and data storage function can be placed on cloud.
 - User service portal may be the candidate if users are expected to increase drastically (or "burst" type access is expected)
 - Systems with almost fixed CPU/memory/storage requirement have small pros to go to cloud.

- 7. What kind of Big Data challenges your organization/project is facing? Are they data management and/or data analytic challenges?
 - Data management (storage)
 - Data analytic challenges (some user request for data analysis)
 - Data re-processing-> "using super computers" works very well at this moment
- 8. Do you see Cloud Computing as the solution to your Big Data challenges?
 - Yes for data analysis
 - Not sure for data management