Scalable Datacube Analytics with rasdaman

Peter Baumann
rasdaman GmbH, Germany
SERVICE QUALITY
OGC WCPS: Analyzing Datacubes

- **Web Coverage Processing Service**
 - spatio-temporal datacube analytics language
 - Part of the OGC WCS “Big Earth Datacube” standards suite

- "From MODIS scenes M1, M2, M3: difference red & nir, as TIFF"
 - “…but only those where nir exceeds 127 somewhere”

```python
for $c$ in (M1, M2, M3)
    where some($c.nir > 127$)
    return encode($c.red - c.nir$, "image/tiff")
```
OGC WCPS: Elevation & Image Fusion

for s in (SatImage), d in (DEM) where s/metadata/@region = "Glasgow"
return
 encode(
 struct {
 red: (char) $s.b7[x0:x1,x0:x1],
 green: (char) $s.b5[x0:x1,x0:x1],
 blue: (char) $s.b0[x0:x1,x0:x1],
 alpha: (char) scale($d, 20)
 },
 "image/png"
)
OGC WCPS: Emulating WMS

for p in (OrthoPhoto),
wl in (WaterLines), wa in (WaterAreas),
d in (DEM)
return
 encode((unsigned char) {
 p * { 1, 1, 1 }
 overlay
 wl * { 0, 128, 255 }
 overlay
 wa * { 191, 255, 255 }
 overlay
 switch d
 case $d > 260$ return { red:255, green:0, blue:0 }
 case $d > 262$ return { red:0, green:255, blue:0 }
 case $d > 264$ return { red:0, green:0, blue:255 }
 default return { red:0, green:0, blue:0 }
 end
),
 "image/png")
...But That's Not What You Want to See

- Let users remain in comfort zone of well-known tools
 - Map navigation: OpenLayers, Leaflet, ...
 - Virtual globe: NASA WorldWind, Cesium, ...
 - Web GIS: MapServer, QGIS, ArcGIS, ...
 - Analysis: GDAL, R, python (OWSLIB, Jupyter notebooks), ...

- ...via WCS / WCPS / WMS as standard client/server APIs

[screenshots: rasdaman-based portals]
Sample Client on 4D Datacube

Timelapse Parameters

- Latitude: 2014-01
- Longitude: -20 : 50
- Elevation levels: Ground, 100m, 200m, 400m

Date: 2017-09-21
Technology
rasdaman: Agile Array Analytics

= „raster data manager“: declarative QL on n-D arrays

 • Scalable parallel “tile streaming” architecture
 • Any spatio-temporal regular & irregular grid
 • OGC WMS + WCS + WCPS

 ▪ Mature, in operational use worldwide

 • Blueprint for standards
 • OGC & INSPIRE Reference Implementation
Architecture

Web clients (m2m, browser)

Internet

rasdaman

geo services

rasserver

File system

database

In progress: HSM integration

tile access

external files

distributed query processing
No single point of failure

alternative storage

optional compression

[SSTD 2013]
Adaptive Partitioning („Tiling“)

- Any tiling [Furtado 1999]
 - Cast into strategies
 - rasdaman storage layout language

- Why irregular tiling?

```sql
insert into MyCollection
values ...;

  tiling
  area of interest [0:20,0:40], [45:80,80:85]
  tile size 1000000
  index d_index storage array compression zlib
```

[OpenStreetMap]
Parallel, Distributed Processing

1 query → 1,000+ cloud nodes

[ACM SIGMOD DanaC 2014, VLDB BOSS 2016]

select
 \[
 \max((A.nir - A.red) / (A.nir + A.red)) \\
 - \max((B.nir - B.red) / (B.nir + B.red)) \\
 - \max((C.nir - C.red) / (C.nir + C.red)) \\
 - \max((D.nir - D.red) / (D.nir + D.red))
 \]
from A, B, C, D
The Beginnings of Array Databases

Consolidated in:
Applications
EOfarm Startup (Greece)

- Big Data Analytics for farmers
 - rasdaman via OGC WCS & WCPS
 - similar framework deployed for water quality monitoring

- Data: Landsat8, Sentinels, RapidEye

- Functionality:
 - Color Composites, Band Ratios and Indices
 - Vegetation Detection
 - Canopy Greenness Estimation
 - Land Surface Temperature
 - Time series over AOI
First-ever direct, ad-hoc mix from protected NASA & ESA services in OGC WCS/WCPS Web client
Agile Analytics on x/y/t + x/y/z/t Earth & Planetary datacubes

- Rigorously standards: OGC WMS + WCS + WCPS
- EU rasdaman + NASA WorldWind
- 500+ TB → 1+ PB

Intercontinental initiative, 3+3 years: EU + US + AUS

ECMWF: River Discharge

RIVER DISCHARGE FORECAST HYDROGRAPH
Latitude: -14.89, Longitude: 14.93

DAILY ACCUMULATED PRECIPITATION FORECAST
Latitude: 34.17, Longitude: -118.71
MEA: Land Surface Temperature, Cloudfree
MEA: Daily Hydro Estimator
Server-Side Processing: Flexibility
Server-Side Processing: Federation

```
SELECT ENCODE(CASE
  WHEN (CONDENSE + over i_i in [42364:42368] using
d[0:3600, 0:1800, i_i[0]] / 1423 + 1.47) > ((CONDENSE +
  over i_i in [42364:42368] using (c) [*:*,*:*,i_i[0]])*(1000))
  THEN ((255) * {1c,0c,0c,0c} + (255) * {0c,1c,0c,0c} + (255)
    * {0c,0c,1c,0c} + (0) * {0c,0c,0c,1c})

  WHEN (CONDENSE + over i_i in [42364:42368] using
d[0:3600, 0:1800, i_i[0]] / 1423 + 4) > ((CONDENSE + over
  i_j in [42364:42368] using (c) [*:*,*:*,i_j[0]])*(1000))
  THEN ((0) * {1c,0c,0c,0c} + (129) * {0c,1c,0c,0c}
```

Query:
- Heavy rainfall risk areas

Server:
- ECMWF
Wrap-Up
Rasdaman: Cross-Domain Datacubes

- **Geo**
 - Environmental sensor data, 1-D
 - Satellite / seafloor maps, 2-D [VLDB 1999]
 - Geophysics (3-D x/y/z)
 - Climate modelling (4-D, x/y/z/t)

- **Life science**
 - Gene expression simulation (3-D) [InfSys 2003]
 - Human brain imaging (3-D / 4-D) [TiNS 2001]

- **Other**
 - Computational Fluid Dynamics (3-D)
 - Astrophysics (4-D)
 - Statistics (n-D)
Summary

- rasdaman = scalable datacube engine
 - Pioneering Array Databases since 1992
 - www.rasdaman.org
- Flexibility: any query, any time, any dimension, any size
- Scalability: CPU/GPU, distributed processing, query rewriting, caching, ...
- Datacube federations
 - Handheld - laptop - cloud - data centers - moving devices
- Mature, large-scale deployments
 - Petascale databases; working on ECMWF’s 220 PB
- Open datacube standards: blueprint, reference implementation